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Abstract

We bring together some recent advances in the literature on vector autoregressive
moving-average models creating a simple specification and estimation strategy for the
cointegrated case. We show that in this case with fixed initial values there exists a so-
called final moving-average representation. We proof that the specification strategy is
consistent. The performance of the proposed method is investigated via a Monte Carlo
study and a forecasting exercise for US interest rates. We find that our method performs
well relative to alternative approaches for cointegrated series and methods which do not
allow for moving-average terms.
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1 Introduction

In this paper, we propose a relatively simple specification and estimation strategy for the
cointegrated vector autoregressive moving-average (VARMA) model using the estimators
given in Yap and Reinsel (1995), Poskitt and Lütkepohl (1995), and Poskitt (2003) and the
identified forms proposed by Dufour and Pelletier (2011). We investigate the performance
of the proposed methods via a Monte Carlo study and a forecasting exercise for US interest
rates and find promising results.

The motivation for looking at this particular model class stems from the well-known the-
oretical advantages of VARMA models over pure vector-autoregressive (VAR) processes; see
e.g. Lütkepohl (2005). In contrast to VAR models, the class of VARMA models is closed
under linear transformations. For example, a subset of variables generated by a VAR process
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is typically generated by a VARMA, not by a VAR process (Lütkepohl, 1984a,b). It is well
known that linearized dynamic stochastic general equilibrium (DSGE) models imply that the
variables of interest are generated by a finite-order VARMA process. Fernández-Villaverde,
Rubio-Ramı́rez, Sargent and Watson (2007) show formally how DSGE models and VARMA
processes are linked. Cooley and Dwyer (1998) claim that modeling macroeconomic time
series systematically as pure VARs is not justified by the underlying economic theory. A
comparison of structural identification methods using VAR, VARMA and state space repre-
sentations is provided by Kascha and Mertens (2009).

Existing specification and estimation procedures for cointegrated VARMA models con-
sider sets of parameter restrictions, such as the so-called echelon form or the scalar-component
representation, which make sure that the remaining free parameters are identified with re-
spect to the likelihood function. However, while both identified forms can yield represen-
tations which are relatively parsimonious, they are often overly complex. Approaches for
cointegrated VARMA models that use the (reverse) echelon form can be found in Yap and
Reinsel (1995); Lütkepohl and Claessen (1997); Poskitt (2003, 2006) and also Poskitt (2009).
The scalar-component representation was originally proposed by Tiao and Tsay (1989) and
embedded in a complete estimation procedure by Athanasopoulos and Vahid (2008).

Instead, we extend the final moving-average (FMA) representation of Dufour and Pel-
letier (2011) to the cointegrated case with fixed initial values. The FMA representation only
imposes restrictions on the MA part of the model and, therefore, has a simpler structure
than the echelon form. Furthermore, we propose to specify the model using Dufour and
Pelletier’s (2011) order selection criterion applied to the model estimated in levels. We proof
a.s. consistency of the estimated orders in this case.

In addition, we compared the proposed approach to the existing approaches via Monte
Carlo simulations and via a forecasting exercise. In particular, we apply the methods to
the problem of predicting U.S.treasury bill and bond interest rates with different maturities
taking cointegration as given. We find rather promising results relative to a variety of differ-
ent models including a multivariate random walk, the standard vector error correction model
(VECM) and approaches based on the echelon form. An investigation of the relative forecast-
ing performances over time shows that our cointegrated VARMA model delivers consistently
good forecasts apart from a period stretching from the mid-nineties to 2000.

The rest of the paper is organized as follows. Section 2 discusses our proposals for the
identification, specification and estimation of cointegrated VARMA models. In Section 3
we present the results on a Monte Carlo study that investigates how one should implement
the proposed procedures and how these compare to alternative methods. Section 4 contains
the forecasting study and Section 5 concludes. All programs and data can be found on the
homepages of the authors.

2 Cointegrated VARMA models

2.1 Model Framework

The data generating process is formulated here. The assumptions we impose allow us to
use the results of Yap and Reinsel (1995), Poskitt and Lütkepohl (1995), Poskitt (2003) and
Dufour and Pelletier (2011) in order to construct a reasonably easy and fast strategy for the
specification and estimation of cointegrated VARMA models. The considered model for a
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time series of dimension K, yt = (yt,1, . . . , yt,K)′, is

A0yt =

p∑
j=1

Ajyt−j +

q∑
j=0

Mjut−j for t = 1, . . . , T, (1)

where Aj , j = 1, . . . , p, and Mj , j = 1, . . . , q are K × K parameter matrices with Ap 6= 0
and Mq 6= 0 and m := max{p, q}. The initial values y1−m, . . . , y0 are assumed to be fixed
constants.

Let us also define the matrix polynomials A(z) := A0 − A1z − A2z
2 − . . . − Apzp and

M(z) := M0 + M1z + . . . + Mqz
q, z ∈ C, with A0 and M0 being invertible, and a pair

of these by [A(z),M(z)]. Using the notation from Poskitt (2006) with minor modifica-
tions, we define deg[A(z), M(z)] as the maximum row degree max1≤k≤K degk[A(z), M(z)],
where degk[A(z), M(z)] denotes the polynomial degree of the kth row of [A(z), M(z)].
Then we can define a class of processes by its associated set {[AM ]}m := {[A(z), M(z)] :
deg[A(z), M(z)] = m}.

Regarding the error terms we make the following assumption which is equivalent to As-
sumption A.2 in Poskitt (2003).

Assumption 2.1 The error term vectors ut = (u′t,1, u
′
t,2, . . . , u

′
t,K), t = 1−m, . . . , 0, 1, . . . , T ,

form an independent, identically distributed zero mean white noise sequence with positive defi-
nite variance-covariance matrix Σu. Furthermore, the moment condition E

(
||ut||δ1

)
<∞ for

some δ1 > 2, where || · || denotes the Euclidean norm, and growth rate ||ut|| = O
(
(log t)1−δ2)

)
almost surely (a.s.) for some 0 < δ2 < 1 also hold.

We make the following two assumptions regarding the polynomials A(z) and M(z):

Assumption 2.2 |M(z)| 6= 0 for |z| ≤ 1, z ∈ C, where | · | refers to the determinant.

Assumption 2.3 The components in yt are at most integrated of order one such that ∆yt =
yt − yt−1 is asymptotically stationary. Moreover, |A(z)| = ast(z)(1− z)s for 0 < s ≤ K and
ast(z) 6= 0 for |z| ≤ 1, z ∈ C. The number r = K − s is called the cointegrating rank of the
series yt.

Hence, the moving-average polynomial is assumed to be invertible. Moreover, it follows
from Assumption 2.3 that we can decompose Π :=

∑p
j=1Aj − A0 as Π = αβ′, where α and

β are (K × r) matrices with full column rank r. Thus, one can write

A0∆yt = αβ′yt−1 +

p−1∑
j=1

Γj∆yt−j +

q∑
j=0

Mjut−j (2)

with Γj = −(Aj+1 + · · ·+Ap), t = 1, . . . , T .
We have not considered a constant term in the specification in (1), mainly for nota-

tional convenience. The used estimation methods remain valid provided the constant can
be absorbed in the cointegrating relation, i.e. if a constant term in (1) can be expressed as
µ0 = −αρ, where ρ is of dimension r × 1, such that a linear trend in the variables is ruled
out; see Poskitt (2003, Section 2, p. 507) and Yap and Reinsel (1995, Section 6). We follow
the approach of Poskitt (2003) and Yap and Reinsel (1995) to accommodate such a constant
term by mean-adjusting the data prior to estimation and specification. Hence, we actually
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apply the methods to yt − T−1
∑T

s=1 ys in the VARMA case. However, the notation in the
following will not distinguish between raw and adjusted data. The explicit inclusion of a
constant term into the estimation procedure is discussed in Lütkepohl and Claessen (1997).

2.2 Identification

It is well known, that one has to impose certain restrictions on the parameter matrices in
order to achieve uniqueness. That is, given a series (yt)

T
t=1−m, there is generally more than

one pair of finite polynomials [A(z), M(z)] such that (1) is satisfied. Therefore, one has to
restrict the set of considered pairs [A(z), M(z)] to a subset such that every process satisfying
(1) is represented by exactly one pair in this subset.

Poskitt (2003) proposes a complete modeling strategy using the echelon form which is
based on so-called Kronecker indices. Here, we use the much simpler final moving-average
(FMA) representation proposed by Dufour and Pelletier (2011) in the context of stationary
VARMA models. This representation imposes restrictions on the moving-average polynomial
only. More precisely, we consider only polynomials [A(z), M(z)], such that

M(z) = m(z)IK , m(z) = 1 +m1z + . . .+mqz
q. (3)

is true and choose among these the pair with the smallest possible orders p, q.1 As already
noted by Dufour and Pelletier (2011), this identification strategy is valid despite A(z) having
roots on the unit circle. What is left, is only to show the existence and uniqueness of the
FMA form in the non-stationary context with fixed initial values. Analogous to the results
in Poskitt (2006), we can show that in this particular case the resulting pair of polynomials
does not have to be left-coprime anymore. We assume

Assumption 2.4 The K-dimensional series (yt)
T
t=1−m admits a VARMA representation as

in (1) with A0 = M0, [A(z), M(z)] ∈ {[AM ]}m and fixed initial values y1−m, . . . , y0.

The identification of the parameters of the FMA form follows from the observation that
any process that satisfies (1) can always be written as

yt =
t+m−1∑
s=1

Πsyt−s + ut + nt, t = 1−m, . . . , T, (4)

where it holds, by construction of the sequences (Πi)
T+m−1
i=0 and (nt)

T
t=1−m, that

0 =
m∑
j=0

MjΠi−j , i > m (5)

0 =

m∑
j=0

Mjnt−j , t ≥ 1. (6)

1 Dufour and Pelletier (2011) also propose another representation that restricts attention to pairs with
diagonal moving-average polynomials such as M(z) = diag(m1(z), m2(z), . . . , mK(z)) where mk(z) = 1 +
mk,1z + . . .mk,qkz

qk k = 1, . . . , K are scalar polynomials. This form delivered results similar to the ones for
the FMA form and will therefore not be discussed in the paper.
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On the other hand, given a process satisfying (4) and existence of matricesM0, M1, . . . , Mm

such that conditions (5) and (6) are true, the process has a VARMA representation as above.
These statements are made precise in the following theorem which is just a restatement of
the corresponding theorem in Poskitt (2006).

Theorem 2.1 The process (yt)
T
t=1−m admits a VARMA representation as in (1) with A0 =

M0, A0 invertible, [A(z), M(z)] ∈ {[A M ]}m and initial conditions y0, . . . , y1−m if and only
if (yt)

T
t=1−m admits an autoregressive representation

yt =

t+m−1∑
s=1

Πsyt−s + ut + nt, t = 1−m, . . . , T,

and there exist matrices M0,M1, . . . ,Mm which satisfy conditions (5) and (6) and M0 is
invertible.

Now, one assigns to the autoregressive representation a unique VARMA representation.
Because of the properties of the adjoint, Mad(z)M(z) = |M(z)|, equations (5) and (6) imply

0 =

q̄∑
j=0

m̄jΠi−j , i > q̄ (7)

0 =

q̄∑
j=0

m̄jnt−j , t ≥ q̄ −m+ 1. (8)

Here, |M(z)| =: m̄(z) = m̄0 + m̄1z + . . . + m̄q̄z
q̄ is a scalar polynomial and q̄ = m ·K is its

maximal order.
Because of Theorem 2.1, one can therefore define a pair in final moving-average form as in

(3), [A(z), m̄(z)IK ], provided that T ≥ q̄ −m+ 1 and that the first coefficient is normalized
to one. This representation, however, is not the only representation of this form. To achieve
uniqueness, we select the representation of the form [A(z), m(z)IK ] with the lowest possible
degree of the scalar polynomial m(z) such that the first coefficient is normalized to one and
(7) and (8) are satisfied.

Theorem 2.2 Assume that the process (yt)
T
t=1−m satisfies Assumption 2.2 and 2.4. Then,

for T ≥ q̄−m+ 1, it is always possible to select an observationally equivalent, representation
in terms of a pair [A0(z), m0(z)IK ] with A0 = IK and minimal orders p0 and q0 commencing
from some t0 ≥ 1−m.

In contrast to the discussion in Dufour and Pelletier (2011) the special feature in the
non-stationary case with fixed initial values is that the FMA representation does not need
to be left-coprime, in particular the autoregressive and moving-average polynomial can have
the same roots. This is a consequence of condition (8) and is not very surprising given the
results of Poskitt (2006) on the echelon form representation in the same setting.

If we assume normality and independence, i.e. ut ∼ i.i.d.N(0,Σu) with Σu positive
definite, then, under our assumptions, the parameters of the model can be identified via the
Gaussian partial likelihood function conditional on the initial observations; see Poskitt (2006,
Section 2.2).
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The error correction representation

yt = Πyt−1 +

p0−1∑
i=1

Γj∆yt−j +

q0∑
j=0

m0,jut−j (9)

with the same initial conditions as above is identified as there exists a one-to-one mapping
between this representation and the presentation in levels (cf. Poskitt, 2006, Section 4.1).

2.3 Specification

Dufour and Pelletier (2011) have proposed an information criterion for specifying stationary
VARMA models identified via (3). In their setting, the unobserved residuals are first esti-
mated by a long autoregression and then used to fit models of different orders p and q via
generalized least squares (GLS). The orders which minimize their information criterion are
then chosen. We modify their procedure by replacing the GLS regressions by OLS regres-
sions. We do this in order to be able to apply the results of Huang and Guo (1990) when
proving the consistency of the order estimates. The difference between the two variants was
mostly irrelevant when they were compared by Monte Carlo simulations (not reported). To
be precise, we proceed as follows.

Stage I

Subtract the sample mean from the observations as justified above.

Fit a long VAR regression with hT lags to the mean-adjusted series as

yt =

hT∑
i=1

ΠhT
i yt−i + uhTt . (10)

Denote the estimated residuals from (10) by ûhTt .

Stage II

Regress yt on φt−1(p, q) = [y′t−1, . . . , y
′
t−p, û

hT ′
t−1, . . . , û

hT ′
t−q]

′, t = sT + 1, . . . T , imposing the
FMA restriction in (3) for all combinations of p ≤ pT and q ≤ qT with sT = max(pT , qT )+hT
using OLS. Denote the estimate of the corresponding error covariance matrix by Σ̂T (p, q) =
(1/N)

∑T
sT +1 zt(p, q)z

′
t(p, q), where zt(p, q) are the OLS residuals and N = T − sT . Compute

the information criterion

DP (p, q) = ln |Σ̂T (p, q)|+ dim(γ(p,q))
(lnN)1+ν

N
, ν > 0 (11)

where dim
(
γ(p,q)

)
is the dimension of the vector of free parameters of the corresponding

VARMA(p, q) model.

Choose the orders by (̂p, q)IC = argmin(p,q)DP (p, q), where the minimization is over p ∈
{1, . . . , pT }, q ∈ {0, 1, . . . , qT }.
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We obtain the following theorem on the consistency of the order estimators.

Theorem 2.3 If Assumptions 2.1-2.4 hold, hT = [c(lnT )a] (the integer part of c(lnT )a)
for some c > 0, a > 1, and if max(pT , qT ) ≤ hT , then the orders chosen according to (11)
converge a.s. to their true values.

Theorem 2.3 is the counterpart to Dufour and Pelletier (2011, Theorem 5.1), dealing
with the stationary VARMA setup, and, to some extent, to Poskitt (2003, Proposition 3.2),
referring to cointegrated VARMA models identified via the echelon form. Note, that we can
apply the same penalty term CT = (lnN)1+ν , ν > 0, as in the stationary VARMA case.
However, we use an i.i.d. error term assumption in contrast to the strong mixing assumption
employed by Dufour and Pelletier (2011). We proceed in this way in order to directly appeal
to Poskitt (2003, Proposition 3.2).

The practitioner has to chose values for ν, hT , pT , and qT satisfying the conditions
contained in Theorem 2.3. We set ν = 0.5 and hT = [(lnT )1.25] according to the results of
our own simulations (not reported). The chosen deterministic rule to determine hT was also
applied by Poskitt (2003). For a potential use of information criteria to select hT see Poskitt
(2003, Section 3) and also compare Bauer and Wagner (2005, Corollary 1). Moreover, we set
pT = qT = hT . Higher orders would lead to near multicollinearity problems due to the fact
that the residuals are estimated based on hT + 1 values of yt. Nevertheless, the maximal lag
orders are not very important for the results of the forecasting comparison in Section 4.

2.4 Estimation

The estimation of the model consists of three stages. The first stage is exactly the same
as for the specification algorithm. The second stage takes the selected orders as given and
estimates the parameters by GLS. Finally, the third stage takes these estimates as a starting
point for one iteration of a conditional maximum likelihood iteration step.

Stage I

Again, mean-adjusted data is taken for all stages. For completeness, we restate the equation
of the long autoregression here

yt =

hT∑
i=1

ΠhT
i yt−i + uhTt (10’)

with estimated residuals ûhTt and covariance estimate Σ̂hT
u = (T − hT )−1

∑T
t=hT +1 û

hT
t ûhT ′t .

Stage II

Given orders, p, q, we obtain the estimator of Poskitt and Lütkepohl (1995) and Poskitt
(2003) as described in the following.

The cointegrated VARMA model can be conveniently written as

∆yt = Π′yt−1 + [Γ M]Zt−1 + ut, (12)

where Γ = vec[Γ1, . . . ,Γk], M = vec[M1, . . . ,Mq] and Zt−1 = [∆y′t−1, . . . ,∆y
′
t−k, u

′
t−1, . . . , u

′
t−q]

′.

Let ZhTt be the matrix obtained from Zt by replacing the ut by ûhTt . Identification re-
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strictions are imposed by defining a suitable restriction matrix, R1, consisting of zeros and
ones such that the vector of free parameters γ1 relates to the vector of total parameters as
vec([Π Γ M]) = R1γ1.

Equipped with these definitions, one can write

∆yt =
(
y′t−1 ⊗ IK , ZhTt−1

′
⊗ IK

)
vec([Π Γ M]) + ut

= Xtγ1 + ut., (13)

where Xt :=
(
y′t−1 ⊗ IK , ZhTt−1

′
⊗ IK

)
R1.

Then, the feasible GLS estimator is given by

γ̂1 =

 T∑
t=hT +m+1

X ′t(Σ̂
hT
u )−1Xt

−1
T∑

t=hT +m+1

X ′t(Σ̂
hT
u )−1∆yt, (14)

where m := max{p, q}. The estimator is strongly consistent given Assumptions 2.1 - 2.4
(Poskitt, 2003, Propositions 4.1 and 4.2).2 The estimated matrices are denoted by Π̂, Γ̂, M̂ .
To exploit the reduced rank structure in Π = αβ′, β is normalized such that β = [Ir, β

∗′]′.
Then α is estimated as the first r rows of Π̂ such that

α̂ = Π̂[., 1 : r], (15)

β̂∗ =

(
α̂′
(
M̂(1)Σ̂hT

u M̂(1)′
)−1

α̂

)−1

×
(
α̂′
(
M̂(1)Σ̂hT

u M̂(1)′
)−1

Π̂[., r + 1 : K]

)
. (16)

See also Yap and Reinsel (1995, Section 4.2) for further details.

Stage III

The estimates from Stage II are taken as starting values for one iteration of a conditional
maximum likelihood estimation procedure (Yap and Reinsel, 1995). Define the vector of free
parameters given the cointegration restrictions as δ := (vec((β∗)′)′, vec(α)′, γ′2)′, where γ2 is
the vector of unrestricted elements in Γ,M which is related to the these matrices by the
relation vec([Γ M]) = R2γ2 and R2 is another restriction matrix imposing the FMA form.
Denote the value of δ at the jth iteration as δ(j). The elements of the initial vector δ(0) = δ̂

correspond to (14) - (16). Compute u
(j)
t , t = 1, . . . , T , and Σ

(j)
u according to

q∑
i=0

M
(j)
i u

(j)
t−i = ∆yt − α(j)

(
β(j)

)′
yt−1 −

p−1∑
i=1

Γ
(j)
i ∆yt−i, (17)

Σ(j)
u =

1

T

T∑
t

u
(j)
t

(
u

(j)
t

)′
. (18)

2Our formulation differs from his because we formulate the models in differences throughout. The proce-
dures yield identical results.
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For the calculation, it is assumed yt = ∆yt = ut = 0 for t ≤ 0. Only W
(j)
t := −∂u(j)

t /∂δ
′
t is

needed for computing one iteration of the proposed Newton-Raphson iteration. It can also
can be calculated iteratively as

(
W

(j)
t

)′
=

[
(y′t−1H ⊗ α), (y′t−1β ⊗ IK), ((Z

(j)
t−1)′ ⊗ IK)R2

]
−

q∑
i=1

Mi(W
(j)
t−i)

′ (19)

where H ′ := [0((K−r)×r), IK−r], c.f. Yap and Reinsel (1995, eqs. (20) and (21)). The estimate
is then updated according to

δ(j+1) − δ(j) =

(
T∑
t=1

W
(j)
t

(
Σ(j)
u

)−1
(W

(j)
t )′

)−1 T∑
t=1

W
(j)
t

(
Σ(j)
u

)−1
u

(j)
t , (20)

which amounts to a GLS estimation step. The estimates of the residuals and their covariance
can be updated according to (17) and (18). The one-step iteration estimator δ(1) is consistent
and fully efficient asymptotically according to Yap and Reinsel (1995, Theorem 2) given the
strong consistency of the initial estimator γ̂1 in (14).

The advantage of this three-step procedure is that it avoids all the complications as-
sociated with iterative, nonlinear estimation. In addition, it greatly facilitates the use of
simulation-based procedures, like e.g. the bootstrap; a point mentioned by Dufour and Pel-
letier (2011) in the context of stationary VARMA models.

For the proofs and the forecasting exercise, we take the cointegrating rank as given.
However, one might use the results of Yap and Reinsel (1995) to specify the cointegrating
rank at the last two steps of the procedure.

3 Monte Carlo Simulations

We have conducted Monte Carlo simulations to show (a) how to specify hT and ν and (b)
how the chosen identification form compares to other identification forms. It turned out
that varying hT and ν had minor effects. Therefore, we present results on (a) in an online
supplement and focus on the results on (b) in the paper. To this end, we set ν = 0.5 and
hT = [(lnT )1.25] which seem to be a reasonable choice according to our simulations.

3.1 Simulation design

For the Monte Carlo simulations we tried to find a spectrum of diverse data generating
processes which possibly favor different identification forms. The simulated DGPs are as
follows:

DGP I: The process is taken from the Monte Carlo study in Yap and Reinsel (1995) and
is a trivariate ARMA(1,1) model with cointegrating rank, r = 2, ∆yt = Πyt−1 +ut+M1ut−1,
where the initial values are set equal to zero, the errors are i.i.d. N(0,Σ) and the parameter
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matrices are

αβ′ =

−.398 .433
.121 −.340
.103 .166

 (
1 0 −.80
0 1 −.48

)
, M1 = −

−0.7 .0 .0
.3 −0.5 .0
−.2 .1 .1


Σu =

1.0 .5 .4
.5 1.0 .7
.4 .7 1.0

 . (21)

DGP II: The process is taken from Lütkepohl and Claessen (1997) that estimated a
VARMA with Kronecker indices p = (2, 1, 1, 1) on US macroeconomic data.3 The initial
values are set to zero. Thus, the process is given by A0∆yt−1 = αβ′yt−1 + Γ1∆yt−1 +
A0ut−1 +M1ut−1 +M2ut−2, where αβ′ := A1 +A2 −A0 and

A0 =


1 0 0 0

−0.173 1 0 0
−0.350 0 1 0
0.205 0 0 1

 , Γ1 =


0.497 0.123 −0.548 −0.679

0 0 0 0
0 0 0 0
0 0 0 0

 ,

M1 =


−0.268 0 0 0
0.143 0.035 0.490 −0.373
0.115 0.164 0.550 −0.442
0.168 0.094 0.208 −0.810

 , M2 =


0.151 0.112 0.104 0.464

0 0 0 0
0 0 0 0
0 0 0 0

 ,

Σu = 10−4 ×


0.699 0.076 −0.100 −0.401
0.075 0.872 0.258 0.215
−0.100 0.258 0.721 0.333
−0.401 0.215 0.333 0.790

 , α =


0.013
0.028

0.00009
0.0046

 , β =


1

−0.343
−16.72
19.35

 .

(22)

DGP III: The parameter values of the trivariate VARMA(1,1) model in FMA form are
taken from the estimation results for an interest rate systems with maturities (3M, 1Y, 10Y ).
This is one of the systems considered in the forecasting study of Section 4. The initial values
are set to the actually observed values. The process is ∆yt = Πyt−1 + ut +M1ut−1 with

Π =

−0.30 0.31
0 −0.02

0.14 −0.13

(1 0 −1.04
0 1 −1.14

)
, M1 =

0.35 0 0
0 0.35 0
0 0 0.35

 ,

Σu =

0.16 0.14 0.06
0.14 0.16 0.08
0.06 0.08 0.07

 . (23)

We consider sample sizes of T = 50, 100, 200. The results on T = 200 are reported in the
online supplement. All simulations are based on R = 1000 replications.

Since different identification forms lead to different parameters, we cannot compare esti-
mation accuracy. Instead, we compare the accuracy of the implied impulse response estima-

3We slightly modified their estimated model by omitting the intercept term such that the generated pro-
cesses satisfy our assumptions.
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tors. Given the moving-average representation of yt

yt = mt +
t+m−1∑
i=0

Φiut−i, (24)

where mt contains the influence of the initial values, let φh = vec(Φh) denote the vector of
responses of the system to shocks h periods ago. Accuracy is here measured for each horizon
as the sum of squared errors of the components R−1

∑R
i=1(φh − φ̂h,i)′(φh − φ̂h,i), where φ̂h,i

is the estimated response and the dependence on an estimation and specification strategy is
omitted.

We also assess the forecasting precision of the methods. We compute the traces of the
estimated mean squared forecast error matrices. These are estimated for horizon h by

tr

(
1

R

R∑
i=1

(yT+h,i − ŷT+h|T,i)(yT+h,i − ŷT+h|T,i)
′

)
, (25)

where yT+h,n is the value of yt at T + h for the nth replication and ŷT+h|T,n denotes the
corresponding h-step ahead forecast at origin T . The dependence on the specific algorithm
is again suppressed. The residuals ût are used to compute forecasts recursively according to

ŷT+h|T = A−1
0

 p∑
j=1

Aj ŷT+h−j|T +

q∑
j=h

Mj ûT+h−j

 , (26)

for h = 1, . . . , q. For h > q, the forecast is simply ŷT+h|T = A−1
0

∑p
j=1Aj ŷT+h−j|T .

3.2 Comparison to cointegrated Echelon VARMA models

There are basically two alternative identification methods: the scalar component methodology
(SCM) (Tiao and Tsay, 1989; Athanasopoulos and Vahid, 2008) and the identification via a
(reverse) echelon form as proposed by Lütkepohl and Claessen (1997) for cointegrated time
series. Unfortunately, the SCM method cannot be automatized and thus is not comparable in
a large scale simulation study, see Athanasopoulos, Poskitt and Vahid (2012). We therefore
compare the FMA form only to the echelon representation. The identification via a reversed
echelon representation is more complex than the FMA method in that it requires the deter-
mination of K integer parameters, the so-called Kronecker indices. In line with the rest of
the paper we focus on co-integrated processes.

While the cointegrating rank is assumed to be known, all other specification choices are
made data-dependent - in particular we consider the two specification strategies proposed
in Poskitt and Lütkepohl (1995) and Poskitt (2003) for the echelon form. They are labeled
PL1 and PL2 and determine the Kronecker indices equation by equation by using a selection
criterion of the form

∆k,T (n) = log σ̂2
k,T (n) + CTn/T, (27)

where n is the Kronecker index for equation k, σ̂2
k,T (n) is the estimated variance of the

corresponding error term and CT is a penalty term. Since the description of these methods
would be too long for the current paper, we recommend Bartel and Lütkepohl (1998) for
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a concise description. Poskitt and Lütkepohl (1995) proof that both procedures lead to
consistent estimators of the true Kronecker indices, provided the penalty term is chosen
suitably.

All parameters of the specification methods for the echelon form described above are
chosen according to a Monte Carlo study made by Bartel and Lütkepohl (1998). In particular,
we have hT = max{[lnT ], p̂AIC , 4}, PT = [hT /2] and CT = h2

T and p̂AIC is determined by
searching up to a maximum order of 1.5 · (log T ). These choices are optimized for the echelon
form. For the FMA form, we stick to hT = [(lnT )1.25] and ν = 0.5

At times, the identified model might lead to an estimated process with highly explosive
autoregressive roots. In that case we set the estimated model to a simple multivariate random
walk. That case occurred in less than 9 % of the replications for the PL1 specification strategy
when applied to realizations of the DGP II with T = 50 observations. Otherwise it occurred
typically in less than 2 % of the cases for each specification strategy.

— Figures 1 and 2 about here —

Results: Figures 1 and 2 show for DGPs I to III (rows) the estimated MSE for the impulse
responses (first column) and the estimated forecast MSEs (second column) of the method
using the FMA identification together with the methods relying on the echelon form (PL1
and PL2). The graphs can be summarized as follows. The choice of identification does
not matter much for forecast precision while it affects the precision of the impulse response
estimators. For T = 50 the FMA method is preferable. For higher sample sizes it depends
on the DGP. The dynamics of DGP I are relatively well captured by the PL1 and PL2
methods, while the FMA method seems advantageous for DGP II and slightly advantageous
for DGP III. This is somewhat surprising given the structure of the simulated DGPs. A
possible conjecture is that DGP I has a rich moving-average structure leading to very high
orders for the FMA representation. In sum, no method seems to be clearly advantageous in
the present context though the results suggest that for small sizes the FMA identification is
recommendable.

4 Forecasting Study

We show that our modeling strategy is potentially interesting by applying it in a prediction
exercise for US interest rates and comparing the resulting forecasts to those of a set of
benchmark models.

The application of the cointegrated VARMA model is motivated by the widespread use
of the cointegration approach for the analysis of the term structure of interest rates, see
e.g. Campbell and Shiller (1987), Shea (1992), Hassler and Wolters (2001). However, results
on the performance of (cointegrated) VARMA models in this context are considerably more
sparse. Related to our approach are the papers of Yap and Reinsel (1995), Monfort and
Pegoraro (2007) and Feunou (2009).

An alternative approach to time series modeling of the term structure is based on factor
models such as the dynamic version of the Nelson-Siegel (DNS) model (Diebold and Li, 2006;
Christensen, Diebold and Rudebusch, 2011). These models express the observable interest
rates as linear combinations of factors that are often assumed to follow a VAR process.
Then, these models also imply a reduced form VARMA representation for the interest rates
according to Dufour and Stevanović (2013, Theorem 3.1) but do not embody cointegration
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restrictions. We do not consider factor models because they would require zero-coupon yield
data, like e.g. the Fama-Bliss data which only run until 2003. Furthermore, the forecasting
performance of the DNS model was inferior to that of the cointegrated VARMA models on
that Fama-Bliss data set.

4.1 Design of Forecast Comparison

We take monthly averages of interest rate data for treasury bills and bonds from the FRED
database of the Federal Reserve Bank of St. Louis. The used data are the series TB3MS,
TB6MS, GS1, GS5 and GS10 with maturities, 3 months, 6 months, 1 year, 5 years and 10 years,
respectively. Our vintage starts in 1970:1 and ends in 2012:12 and comprises T = 516 data
points. Denote by Rt,mk

the annualized interest rate for the k-th maturity mk. Throughout
we analyze yt,k := 100 ln(1 +Rt,mk

). The data are shown in Figure 3.

— Figure 3 about here —

We compare the forecasting performance of the proposed cointegrated VARMA models
using the FMA identification form and the parameter estimates based on the Yap & Reinsel
method (EC-VARMA-YR-FMA) to a set of alternative models. We do not discuss the results
obtained by using only the initial estimates given in Poskitt and Lütkepohl (1995); Poskitt
(2003) because of space constraints and because they appeared to be inferior for some setups.

The primary benchmark is the random walk (RW) model as this model is still regarded
quite successful in the literature. Moreover, we consider the VECM as the most closely
related cointegrated competitor model. In order to analyze the importance of the specific
identification form of a VARMA model, of the moving-average component and of the imposi-
tion of cointegration restrictions in more detail, we investigated the forecasting performance
of a set of alternative models. These are the cointegrated VARMA model identified via
the echelon form using the specification method labeled PL2 as outlined in Section 3 (EC-
VARMA-YR-ECH), the level-VARMA model identified via the FMA form (VARMA-FMA)
and the level-VAR model. We also investigated the forecasting precision of univariate AR
models but excluded them for brevity as they were not systematically superior to the vector
models.

The level-VARMA model is specified using the information criterion in (11) as described
in Subsection 2.3 and it is estimated setting the cointegration rank r equal to the system
dimension K. This approach is equivalent to the estimation procedure proposed in Dufour
and Pelletier (2011). This follows from the fact that the iterative step (20) is the same
as the third step of Dufour and Pelletier’s (2011) procedure if r = K. The lag order in
levels of the VECM and the level-VAR is specified via the BIC using a maximum lag order of
pT = [(T/ log T )1/2] (Paulsen, 1984; Bauer and Wagner, 2005). The parameters of the VECM
are estimated by reduced rank maximum likelihood estimation (Johansen, 1988, 1991, 1995)
while we apply the OLS estimator to the level-VAR. Note that the estimation procedures
regarding the level-VARMA and VAR models do not impose any restriction on the roots of
the autoregressive polynomial. Hence, the estimates could imply a stationary representation
of the interest rates.

We chose to select the orders data-dependent for all models in our forecast study. Hence
as regards the VARMA and VAR frameworks we compare two modeling strategies rather than
two models: one, which allows for nonzero moving-average terms and includes the special case
of a pure VAR and one, which exclusively considers the latter case. Moreover, we pre-impose
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a cointegration rank of K−1 on the cointegrated VARMA and vector error correction (VEC)
models.

All models are specified and estimated using the data that is available at the forecast
origin. Then, forecasts for horizon h are obtained iteratively. The considered forecast horizons
are 1, 3, 6 and 12 months. As the sample expands, all models are re-specified and re-estimated,
forecasts are formed and so on - until the end of the available sample is reached. In order to
have sufficient observations for estimation, the first forecasts are obtained at Ts = 200.

Given estimates of the parameters and innovations, forecasts based on the cointegrated
VARMA models are obtained by using the implied VARMA form in levels. Finally, the
sample mean, which was subtracted earlier, is added to the forecasts. The latter is also done
with respect to the level-VARMA model. The point forecasts based on the RW and the VAR
are obtained in a standard way. Similar to the VARMA setup the estimated implied VAR
form is used for the VECM to obtain the forecast.

The forecast precision at a certain forecast horizon in terms of an individual series is
measured by the (estimated) mean squared prediction errors (MSPEs). The MSPE is defined
in a standard way. In the online supplement to this paper we present and discuss the joint
forecasting precision, i.e. the forecasting precision with respect to a whole multiple interest
rate system. To get a complete picture of the performance of the cointegrated VARMA
models vis-a-vis the RW for h-step-ahead forecasts for the k-th series in the system we
compute cumulative sums of squared prediction errors defined as

t∑
s=T s+h

e2
s,RW,k,h − e2

s,M,k,h, t = T s + h, . . . , T, (28)

where M stands for the corresponding model and êt,RW,k,h, êt,M,k,h are the forecast errors
from predicting yt,k based on information up to t−h, i.e. et,M,k,h = yt,k− ŷt,k|t−h,M. Ideally,
we should see that the above sum steadily increases over time if forecasting method M
is indeed preferable to the RW. We show the results for the cointegrated VARMA model in
FMA form and the VECM for the system with maturities of 3 months and 1 year and forecast
horizons h = 1, 6, 12 in Figure 4. Similar conclusions can be drawn from pictures regarding
the other interest rate systems and model approaches.

4.2 Detailed Results

We have considered all bivariate and three-dimensional models that can be built from the five
interest rates as well as the full five-dimensional system. We provide representative findings
for some of the interest rate systems in Tables 1 and 2.

— Table 1 about here —

Table 1 contains the main results for the RW model, the cointegrated VARMA and the
VECM. The table displays the MSPEs series by series for different systems and horizons.
On the left column the maturities of the systems are stated; e.g. the first two rows stand
for the bivariate system with interest rates for maturities 3 and 6 months. The MSPEs on
the four considered forecast horizons are given in the respective columns labeled as 1, 3, 6,
and 12. The entries for the RW model are absolute while the entries for the other models
are always relative to the corresponding entry for the RW model. For example, the first
entry in the first row tells us that the random walk produces a one-step-ahead MSPE of

14



0.037 which corresponds to
√

0.037 ' 0.19 percentage points. In the same row, the entry for
EC-VARMA-YR-FMA of 0.739 at h = 1 tells us that the cointegrated VARMA-FMA model
produces one-step-ahead forecasts of the 3-month interest rate that have a MSPE which is
roughly 25 % lower than the MSPE of the RW model.

Table 1 shows that the cointegrated models are more advantageous relative to the RW
model for the bivariate systems than for the larger systems. Apparently, the cointegrated
models can be very advantageous at one-month and three-month horizons while the RW
becomes more competitive for longer maturities and longer horizons - at least when individual
MSPEs are considered. While the improved relative performance of the RW in case of longer
horizons is in contrast to the findings in Diebold and Li (2006) it fits the results of de Pooter
(2007) and Mönch (2008). The latter two studies extend the data set used in Diebold and Li
(2006) from to 2000 into 2003, a period in which the RW model performs rather well relative
to the DNS model for long horizons. The foregoing discussion clearly indicates to analyze
the forecasting performance over time in more detail as we do later on.

Comparing the MSPE figures for the cointegrated VARMA model and the VECM, one can
see that the VARMA model is generally performing better, sometimes quite clearly. Typically,
a VARMA(1,1) model is preferred by the information criterion over pure VAR models while
the BIC usually picks two autoregressive lags regarding the VECM. An exception is the system
consisting of five variables. Here, the lag selection criterion (11) almost always chooses no
moving-average terms and prefers a VAR(2) like the BIC on the VECM setup. Thus, the
“VARMA results” are actually results for the pure VECM model when estimated with the
algorithm of Yap and Reinsel (1995). Therefore, the comparison for the five-variable system
amounts to a comparison of different estimation algorithms for the same model. It turns
out that in this case reduced rank regression is preferable to the Yap and Reinsel’s (1995)
iterative method in terms of the MSPE measure at h = 1. However, at the other forecast
horizons the approach of Yap and Reinsel (1995) is superior.

Overall, allowing for moving-average terms in cointegrated models is beneficial. There
are two main explanations for this finding. On the one hand, the consideration of MA lags
generates a higher degree of model generality. On the other hand, it leads to a smaller number
of model parameters in our forecasting study with the exception of the five-dimensional
system. As regards the two- and three dimensional systems we usually obtain K2 and 2·K2−1
parameters for the cointegrated VARMA and VEC models, respectively.

Comparing the relative forecast performance over time, Figure 4 of course mirrors the
results of Table 1 as the table contains the end-of-sample results. Moreover, the forecasting
advantage of the cointegrated VARMA and VEC models is relatively consistent through time.
This can be concluded although there are, on the one hand, periods in which the cointegrated
models do not perform particularly well and, on the other hand, occasional “jumps” when
the cointegrated models perform much better than the RW model. However, these jumps
do not appear to dominate the results in Table 1. The outperformance of the cointegrated
VARMA over the VEC models is also clearly visible.

There a three periods of particular interest. First, there is a period roughly from the
mid-nineties to 2000 when the RW model performed better than the cointegrated models.
Interestingly, a similar finding is also obtained by de Pooter, Ravazzolo and van Dijk (2010)
in a different context. Note that the level-VAR and VARMA models are also outperformed
by the RW during that period. Second, the cointegrated models clearly perform better than
the RW in the period between 2001 and 2003. Third, the curves are rather flat since the
financial crisis. This results from the low interest rates observed during the recent past. As
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a consequence, the MSPEs on all models are rather small in magnitude and quite similar
to each other. Note that the VARMA model has produced negative interest rate forecasts
during the recent years. However, the occurrence is mainly restricted to the 3-month interest
rate and the most negative predicted value for this rate is never below −0.35 percentage
points.

— Table 2 about here —

Table 2 contains the results on the other models we have considered, i.e. the cointegrated
VARMA model identified via the reverse echelon form (EC-VARMA-YR-ECH), the level-
VARMA identified via the FMA form (VARMA-FMA) and the level-VAR (VAR). The table
is structured like Table 1. Again, the entries show the MSPE values relative to those of the
RW model.

Overall, the FMA form outperforms the echelon form in terms of single series’ forecast
performance. Sometimes the outperformance is quite clear. To give an example, the gain in
forecasting precision can amount to roughly 25 percentage points at h=1 for the 3 month
interest rate in the bivariate systems (3M, 5Y) and (3M, 10Y).

One potential explanation for the superior performance of FMA form is its smaller number
of model parameters compared to the echelon form. The PL2 specification procedure usually
suggests a Kronecker index of 1 for each of the K time series regarding all VARMA systems,
including the five-dimensional one for which Kronecker indices of 3 are preferred in a few
cases. A set of Kronecker indices equal to one leads to VARMA(1,1) systems in which the
A1 and M1 parameter matrices are not restricted by the reverse echelon form. Hence, the
cointegrated VARMA-ECH model contains 2·K2−1 parameters in contrast to the FMA form
which just has K2 parameters as described above. Hence, the reduced estimation uncertainty
associated with the FMA may have translated into smaller MSPEs, at least in terms of the
two- and three-dimensional systems.

Comparing the results of the cointegrated VARMA and the VECM with those of the
level-VARMA and level-VAR, respectively, we see that the imposition of K − 1 cointegration
relations reduces the single series’ and systems’ MSPEs in almost all of the considered situ-
ations, sometimes quite clearly. Hence, the use of multiple time series models in simple level
form cannot be recommended for predicting interest rates. A poor performance regarding
the VAR has been already documented in the literature, see e.g. Diebold and Li (2006).

Nevertheless, we want to point out the superior forecast performance of the level-VARMA
relative to the level-VAR. Hence, the consideration of MA terms is not just beneficial for coin-
tegrated models but also more generally. Therefore, it is worthwhile for applied researchers
to consider VARMA-type models rather than to focus on the pure autoregressive framework.

To sum up, the advantage of the cointegrated VARMA-FMA model over the RW is driven
by three factors. First, the imposition of cointegration restrictions, second, the consideration
of a moving-average component and, third, the use of the FMA identification form.

5 Conclusion

In this paper we tie together some recent advances in the literature on VARMA models
creating a relatively simple specification and estimation strategy for the cointegrated case.
Our method is based on the final moving average representation that only imposes restrictions
on the MA part. In order to show the potential usefulness of our procedure, we applied it
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in a forecasting exercise for US interest rates and found promising results. In particular, the
performance was often superior compared to an approach based on the more complex echelon
form.

There are a couple of issues which could be followed up. For example, the appropriate
consideration of a linear trend term in the VARMA model would be desirable for many
applications. Also, it would be good to augment the model by time-varying conditional
variance. Finally, the development of model diagnostic tests appropriate for the cointegrated
VARMA case would be of interest.
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A Proofs

Proof of Theorem 2.1:

⇒: Suppose (yt)
T
t=1−m satisfies (1) given initial conditions. One can view the sequence

(ut)
T
t=1−m as a solution to (1) viewed as system of equations for the errors and given initial

conditions u0, . . . , u1−m. Then we know that (ut)
T
t=1−m is the sum of a particular solution

and the appropriately chosen solution of the corresponding homogeneous system of equations,
ut = uPt + (−nt), say.

Define the sequence (Πi)i∈N0 by the recursive relations Π0 = −IK and

Ai =
i∑

j=0

MjΠi−j , for i = 1, . . . ,m (29)

0 =

m∑
j=0

MjΠi−j , for i > m (30)

Define now (uPt )Tt=1−m by uPt := yt −
∑t+m−1

s=1 Πsyt−s, where
∑0

s=1 Πsyt−s := 0. Then,
(uPt )Tt=1−m is indeed a particular solution as for t ≥ 1

p∑
j=0

Mju
P
t−j =

m∑
j=0

Mj

(
yt−j −

t−j+m−1∑
s=1

Πsyt−s−j

)

= A0yt −
m∑
j=1

Ajyt−j . (31)

Further, define (nt)
T
t=1−m by nt = uPt − ut for t = 1−m, . . . , 0 and 0 =

∑m
i=0Mint−i, for t =

1, . . . , T . Since the initial values determine the rest of the series, we also have ut = uPt − nt
for t ≥ 1.

Therefore, yt =
∑t+m−1

s=1 Πsyt−s + ut + nt for t = 1−m, . . . , 0.

⇐ : Conversely, suppose (yt)
T
t=1−m admits an autoregressive representation as in (4) and

there exist (K × K) matrices Mj j = 0, . . . ,m such that 0 =
∑m

j=0MjΠi−j for i > m and
0 =

∑m
j=0Mjnt−j , for t = 1, . . . , T.. Then, for t = 1, . . . , T , it holds that

m∑
j=0

Mjyt−j =

m∑
j=0

Mj

t−j+m−1∑
s=1

Πsyt−j−s +

m∑
j=0

Mjut−j +

m∑
j=0

Mjnt−j (32)

Moving all terms involving yt to the left-hand side yields

−
t+m−1∑
v=0

min(v,m)∑
j=0

MjΠv−jyt−v = −
m∑
v=0

( v∑
j=0

MjΠv−j
)
yt−v

= A0yt −
m∑
v=1

Avyt−v =

m∑
j=0

Mjut−j (33)

where A0 := −M0Π0 = M0 and Av :=
∑v

j=0MjΠv−j , v = 1, . . . ,m.
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Proof of Theorem 2.2:

From Theorem 2.1, (yt)
T
t=1−m has a autoregressive representation with the associated series

(Π)T+m−1
i=0 and (nt)

T
t=1−m. One considers then the set of all polynomials, m(z) = 1 +m1z +

. . .mqz
q, for which

0 =

q∑
j=0

mjΠi−j (34)

0 =

q∑
j=0

mjnt−j (35)

is true for i > q and t ≥ t for some t, 1 −m ≤ t ≤ T . Denote this set by S. Because of (7)
and (8), we know that the (normalized) determinant, |M(z)|, satisfies the above conditions
with q = q̄ and t = q̄ −m+ 1. Therefore, S is not empty. Denote one solution to

min
m(z)∈S

deg(m(z)), (36)

by m0(z) with degree q0 and corresponding t0, where deg : S → N is the function that assigns
the degree to every polynomial in S. Suppose, there is another solution of the same degree
m1(z) = 1 +m1,1z+ . . .+m1,q0z

q0 . Since both polynomials are of degree q0, a = m0,q0/m1,q0

exists and one gets

0 =

q∑
j=0

(m0,j − am1,j)Πi−j (37)

0 =

q∑
j=0

(m0,j − am1,j)nt−j (38)

Then, normalization of the first non-zero coefficient of (m0(z)− am1(z)) would give a poly-
nomial in S with degree smaller than q0, a contradiction. Thus m0(z) is unique.

Given m0(z), define A0,0 = IK and A0,v :=
∑v

j=0m0,jΠv−j , v = 1, . . . , q0 and p0 as the
minimal number such that A0,v = 0 for v > p0.

Then, condition (34) alone would imply left-coprimeness of [A0(z), m0(z)IK ] but if (nt)
T
t=1−m 6=

0 the minimal orders p0, q0 might well be above those of the left-coprime solution to (34).

Proof of Theorem 2.3:

Similar to Guo, Chen and Zhang (1989), we proof (p̂T , q̂T ) → (p0, q0) a.s. by showing that
the only limit point of (p̂T , q̂T ) is indeed (p0, q0) with probability one, where p0 and q0 are
the true lag orders. Thus, the convergence of p̂T and q̂T follows, which is equivalent to joint
convergence. In order to show this, we demonstrate that the events “(p̂T , q̂T ) has a limit
point (p, q) with p+ q > p0 + q0 ” (assuming p ≥ p0, q ≥ q0) and “(p̂T , q̂T ) has a limit point
(p, q) with p < p0 or q < q0 ” both have probability zero.

Following Huang and Guo (1990) we rely on the spectral norm in order to analyze
the convergence behaviour of various sample moments; that is, for a (m × n) matrix A,
||A|| :=

√
λmax(AA′), where λmax(·) denotes the maximal eigenvalue. Lütkepohl (1996, Ch.
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8) provides a summary of the properties of this norm. The stochastic order symbols o and
O are understood in the context of almost sure convergence.

Case 1: p ≥ p0, q ≥ q0, p+ q > p0 + q0

For simplicity, write T instead of N in our lag selection criterion (11). Then

DP (p, q)−DP (p0, q0) = ln[|Σ̂T (p, q)|/|Σ̂T (p0, q0)|] + c
(lnT )1+v

T
, (39)

where c > 0 is a constant.
We have to show that DP (p, q) − DP (p0, q0) has a positive limit for any pair p, q with

p0 ≤ p ≤ pT , q0 ≤ q ≤ qT , and p + q > p0 + q0. Similar to Nielsen (2006, Proof of
Theorem 2.5), it is sufficient to show that T (Σ̂T (p0, q0) − Σ̂T (p, q)) = O{g(T )} such that
(lnT )1+v/g(T )→∞ in this case.

Let us introduce the following notation:

φ0
t (p, q) = [y′t, . . . , y

′
t−p+1, u

′
t, . . . u

′
t−q+1]′

φt(p, q) = [y′t, . . . , y
′
t−p+1, (û

hT
t )′, . . . , (ûhTt−q+1)′]′

YT = [y′1, . . . , y
′
T ]′

UT = [u′1, . . . , u
′
T ]′

x0
t (p, q) = [(φ0

t−1(p, q)′ ⊗ IK)R]′ (40)

xt(p, q) = [(φt−1(p, q)′ ⊗ IK)R]′

X0
T (p, q) = [x0

1(p, q), . . . , x0
T (p, q)]′

XT (p, q) = [x1(p, q), . . . , xT (p, q)]′

γ(p, q) = [vec(A1, A2, . . . , Ap)
′,m1,m2, . . . ,mq]

′,

where γ(p, q) is the (K2 ·(p+q)×1) vector of true parameters such that Ai = 0 and mj = 0 for
i > p0, j > q0, respectively, and R is implicitly defined such that vec[A1, . . . , Ap,M1, . . .Mq] =
Rγ(p, q).

Then, one can write

yt =

p∑
i=1

Aiyt−i + ut +

q∑
i=1

Miut−i

= [A1, . . . , Ap,M1, . . .Mq]φ
0
t−1(p, q) + ut (41)

= (φ0
t−1(p, q)′ ⊗ IK)vec[A1, . . . , Ap,M1, . . .Mq] + ut

= x0
t (p, q)

′γ(p, q) + ut

in order to summarize the model in matrix notation by

YT = X0
T (p, q)γ(p, q) + UT = XT (p, q)γ(p, q) +RT + UT , (42)

where

RT := [X0
T (p, q)−XT (p, q)]γ(p, q). (43)
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RT does not depend on p, q for p ≥ p0, q ≥ q0 and can be decomposed asRT = [r′0, r
′
1, . . . , r

′
T−1]′,

where rt, t = 0, 1, . . . , T − 1, is a K × 1 vector. Let ZT (p, q) = [z1(p, q)′, . . . , zT (p, q)′]′ be the
OLS residuals obtained from regressing YT on XT (p, q), i.e.

ZT (p, q) = YT −XT (p, q)
[
XT (p, q)′XT (p, q)

]−1
XT (p, q)′YT

= [RT + UT ]−XT (p, q)
[
XT (p, q)′XT (p, q)

]−1
XT (p, q)′[RT + UT ]. (44)

The estimator of the error covariance matrix Σu in dependence on p and q is given by
Σ̂T (p, q) = T−1

∑T
t=1 zt(p, q)zt(p, q)

′. Furthermore, note that Σ̂T (p0, q0)− Σ̂T (p, q) is positive
semidefinite since p ≥ p0 and q ≥ q0 in the current setup. Hence, we have

‖ Σ̂T (p0, q0)− Σ̂T (p, q) ‖= λmax

(
Σ̂T (p0, q0)− Σ̂T (p, q)

)
≤ tr

(
Σ̂T (p0, q0)− Σ̂T (p, q)

)
= tr

(
Σ̂T (p0, q0)

)
− tr

(
Σ̂T (p, q)

)
(45)

= T−1[RT + UT ]′XT (p, q)
[
XT (p, q)′XT (p, q)

]−1
XT (p, q)′[RT + UT ]

− T−1[RT + UT ]′XT (p0, q0)
[
XT (p0, q0)′XT (p0, q0)

]−1
XT (p0, q0)′[RT + UT ].

We have for the terms on the right-hand side (r.h.s.) of the last equality in (45)

[RT + UT ]′XT (p, q)
[
XT (p, q)′XT (p, q)

]−1
XT (p, q)′[RT + UT ]

= O
(
||
[
XT (p, q)′XT (p, q)

]−1/2
XT (p, q)′[RT + UT ]||2

)
= O

(
||
[
XT (p, q)′XT (p, q)

]−1/2
XT (p, q)′RT ||2

)
+O

(
||
[
XT (p, q)′XT (p, q)

]−1/2
XT (p, q)′UT ||2

)
,

(46)

where the result holds for all p ≥ p0 and q ≥ q0.
As in Poskitt and Lütkepohl (1995, Proof of Theorem 3.2), we obtain from Lai and

Wei (1982, Theorem 3), with a correction mentioned in Pötscher (1989, p. 1268), for any
m = max(p, q)

||
[
XT (p, q)′XT (p, q)

]−1/2
XT (p, q)′UT ||2

= O

(
max

{
1, ln+

(
s∑

n=1

∑
t

||yt−n||2 + ||ûhTt−n||2
)})

(47)

= O(ln m) +O

(
ln

(
O

{∑
t

||yt||2 + ||ûhTt ||2
}))

,

where ln+(x) denotes the positive part of ln(x). Moreover, we have that
∑

t ||yt||2 = O(T g)
due to Assumption 3.3, where the growth rate is independent of m, see Poskitt and Lütkepohl
(1995, Proof of Theorem 3.2, Proof of Lemma 3.1). Therefore, the second term on the r.h.s.
of (47) is O(lnT ) for all m. Hence, the left-hand side (l.h.s.) of (47) is O(lnT ) since
m ≤ sT ≤ hT = [c(lnT )a], c > 0, a > 1.

Similar to Poskitt and Lütkepohl (1995, Proof of Theorem 3.2) we obtain from a standard
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result in least squares

||
[
XT (p, q)′XT (p, q)

]−1/2
XT (p, q)′RT ||2 ≤

T−1∑
t=0

K∑
i=1

r2
i,t

≤ ||γ(p, q)||2 ·
q∑

n=1

T∑
t=1

||ut−n − ûhTt−n||2 = O(lnT ), (48)

where the last line follows from Poskitt (2003, Proposition 3.1) due to Assumption 3.3, our
choice of hT and since ||γ(p, q)|| = constant < ∞ independent of (p, q). Hence, we have
T−1[RT + UT ]′XT (p, q) [XT (p, q)′XT (p, q)]−1 ×XT (p, q)′[RT + UT ] = O(lnT/T ).

Using (46 - 48), we have ‖ Σ̂T (p0, q0)− Σ̂T (p, q) ‖= O (lnT/T ) such that T (Σ̂T (p0, q0)−
Σ̂T (p, q)) = O{ln(T )}, the desired result, and therefore DP (p, q) − DP (p0, q0) > 0 a.s. for
sufficiently large T .

Case 2: (p, q) with p < p0 or q < q0

For (p, q) with p < p0 or q < q0, write

DP (p, q)−DP (p0, q0) = ln |IK + (Σ̂T (p, q)− Σ̂T (p0, q0))Σ̂−1
T (p0, q0))|+ o(1) (49)

As in Nielsen (2006, Proof of Theorem 2.4), it suffices to show that lim infT→∞ λmax(Σ̂T (p, q)−
Σ̂T (p0, q0)) > 0. To do so, let us introduce some further notation:

γ̂T (p, q) =
[
X ′T (p, q)XT (p, q)

]−1
X ′T (p, q)YT (50)

= [vec(Â1, Â2, . . . , Âp)
′, m̂1, m̂2, . . . , m̂q]

′.

and, defining sp = max(p, p0) and sq = max(q, q0),

γ̂0
T (p, q) = [vec(Â1, Â2, . . . , Âsp)′, m̂1, m̂2, . . . , m̂sq ]′ (51)

with Âi = 0 for i > p and m̂i = 0 for i > q. Then, we get

ZT (p, q) = YT −XT (p, q)γ̂T (p, q) = YT −XT (sp, sq)γ̂
0
T (p, q)

= UT + X̃Tγ(sp, sq) +XT (sp, sq)γ̃T (p, q), (52)

where γ(p, q) is defined as above in Case 1,

X̃T := (X0
T (sp, sq)−XT (sp, sq)), (53)

and γ̃T (p, q) = γ(sp, sq)− γ̂0
T (p, q).

Let x̃′t and x′t(sp, sq) be the typical K × (pK2 + q) (sub)matrices of the TK × (pK2 + q)
matrices X̃T and XT (sp, sq), respectively, i.e. the partition of X̃T and XT (sp, sq) is analogous
to XT (p, q) above. Then, for p < p0 or q < q0, the residual covariance matrix can be written
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as

Σ̂T (p, q) =
1

T

T∑
t=1

zt(p, q)z
′
t(p, q)

=
1

T

T∑
t=1

x′t(sp, sq)γ̃T (p, q)γ̃′T (p, q)xt(sp, sq)

+
1

T

T∑
t=1

(
x′t(sp, sq)γ̃T (p, q)

) (
ut + x̃′tγ(sp, sq)

)′
(54)

+
1

T

T∑
t=1

(
ut + x̃′tγ(sp, sq)

) (
x′t(sp, sq)γ̃T (p, q)

)′
+

1

T

T∑
t=1

(
ut + x̃′tγ(sp, sq)

) (
ut + x̃′tγ(sp, sq)

)′
= D1,T + (D2,T +D′2,T ) +D3,T ,

where D1,T , D2,T , and D3,T are equal to the square products and cross products in the above
equations, respectively.

Similarly, the residual covariance matrix based on the true orders p0 and q0 can be ex-
pressed by

Σ̂T (p0, q0) = D0
1,T + (D0

2,T + (D0
2,T )′) +D0

3,T , (55)

where D0
1,T , D0

2,T , and D0
3,T are defined analogously to D1,T , D2,T , and D3,T , respectively,

by replacing γ(sp, sq) with γ(p0, q0). Then,

Σ̂T (p, q)− Σ̂T (p0, q0) = D1,T +
(
D2,T +D′2,T −D0

1,T −D0
2,T − (D0

2,T )′
)

+
(
D3,T −D0

3,T

)
. (56)

It is easily seen that D3,T and D0
3,T both converge to Σu a.s.. Therefore, the third term in (56)

is o(1). We will further show thatD2,T , D0
1,T , andD0

2,T are o(1) and that lim infT→∞ λmax(D1,T ) >
0 while noting that D1,T is p.s.d. by construction, showing

lim infT→∞ λmax(Σ̂T (p, q)− Σ̂T (p0, q0)) > 0, the desired result.

D1,T : Since D1,T is positive semidefinite by construction, it has at least one nonzero eigen-
value if

λmax(D1,T ) = λmax

(
1

T

T∑
t=1

x′t(sp, sq)γ̃T (p, q)γ̃′T (p, q)xt(sp, sq)

)

= λmax

(
Γ̃T (p, q)

(
1

T

T∑
t=1

φt(sp, sq)φ
′
t(sp, sq)

)
Γ̃′T (p, q)

)
(57)

≥ λmin

(
1

T

T∑
t=1

φt(sp, sq)φ
′
t(sp, sq)

)
||Γ̃T (p, q)||2,

> 0,
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where Γ̃T (p, q) = [Ã1, . . . , M̃q] is γ̃(p, q) augmented to matrix form. Then, one obtains

limT→∞ inf T−1λmin(
∑T

t=1 φt(sp, sq)φ
′
t(sp, sq)) > 0 a.s., according to Poskitt and Lütkepohl

(1995, Proof of Theorem 3.2), and ||Γ̃T (p, q)||2 = constant > 0 from Huang and Guo (1990,
p. 1753). This gives lim infT→∞ λmax(D1,T ) > 0.

D0
1,T : We have

γ̃T (p0, q0) = γ(p0, q0)− γ̂0
T (p0, q0) (58)

= −
[
X ′T (p0, q0)XT (p0, q0)

]−1
X ′T (p0, q0)

[
X̃Tγ(p0, q0) + UT

]
due to (42), (50), (51), and (53). Therefore,∥∥∥∥∥ 1

T

T∑
t=1

x′t(p0, q0)γ̃T (p0, q0)γ̃T (p0, q0)′xt(p0, q0)

∥∥∥∥∥
≤ 1

T

T∑
t=1

||x′t(p0, q0)γ̃T (p0, q0)γ̃T (p0, q0)′xt(p0, q0)||

=
1

T

T∑
t=1

γ̃T (p0, q0)′xt(p0, q0)x′t(p0, q0)γ̃T (p0, q0) (59)

=
1

T
γ̃T (p0, q0)′

(
X ′T (p0, q0)XT (p0, q0)

)
γ̃T (p0, q0),

and, using the above result on γ̃T ,

=
1

T

[
X̃Tγ(p0, q0) + UT

]′
XT (p0, q0)

[
X ′T (p0, q0)XT (p0, q0)

]−1

× X ′T (p0, q0)
[
X̃Tγ(p0, q0) + UT

]
(60)

=
1

T
O(lnT ),

where the last line follows from (46-48) of the first part of the proof; compare also Huang
and Guo (1990, pp. 1754).

D2,T : Defining the (T × (sp + sq) ·K) matrix ΦT := [φ0(sp, sq), . . . , φT−1(sp, sq)]
′ and let

UT := [u1, . . . , uT ]′, XT := [x̃′1γ(sp, sq), . . . , x̃
′
Tγ(sp, sq)]

′, then tedious but straightforward
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calculations lead to∥∥∥∥∥ 1

T

T∑
t=1

(x′t(sp, sq)γ̃T (p, q))(ut + x̃′tγ(sp, sq))
′

∥∥∥∥∥
=

∥∥∥∥∥ 1

T

T∑
t=1

Γ̃T (p, q)φt(sp, sq)(ut + x̃′tγ(sp, sq))
′

∥∥∥∥∥
=

∥∥∥∥∥ 1

T
Γ̃T (p, q)(Φ′TΦT )1/2(Φ′TΦT )−1/2

T∑
t=1

φt(sp, sq)(ut + x̃′tγ(sp, sq))
′

∥∥∥∥∥
≤ 1

T
||Γ̃T (p, q)(Φ′TΦT )1/2|| ||(Φ′TΦT )−1/2Φ′T (UT +XT )|| (61)

≤
(

1

T
Γ̃T (p, q)(Φ′TΦT )Γ̃′T (p, q)

)1/2

×
(

1

T
(UT + X̃Tγ)′(ΦT ⊗ IK)((Φ′TΦT )−1 ⊗ IK)(Φ′T ⊗ IK)(UT + X̃Tγ)

)1/2

= [O(1)]1/2
[
O

(
1

T
lnT

)]1/2

= o(1)

following from the results on D1,T and again from (46-48) of the first part of the proof. Note
in this respect that the results in (47) and (48) also hold when using the regressor matrix
ΦT ⊗ IK appearing in (61). This is due to the fact that the relevant properties of linear
projections and OLS do not depend on whether the restricted or unrestricted form of the
regressor matrix is used.

D0
2,T : Similar to the arguments used for D2,T using arguments identical to those used to

evaluate D0
1,T , we can write∥∥∥∥∥ 1

T

T∑
t=1

(x′tγ̃T (p0, q0))(ut + x̃′tγ(p0, q0)

∥∥∥∥∥
≤ 1

T
[γ̃T (p0, q0)′(X ′T (p0, q0)XT (p0, q0))γ̃T (p0, q0)]1/2

× [(UT + X̃ ′Tγ(p0, q0))′(UT + X̃ ′Tγ(p0, q0))]1/2 (62)

=

[
O

(
1

T
lnT

)]1/2

[O(1)]1/2 = o(1)

noting that T−1(UT + X̃ ′Tγ(p0, q0))′(UT + X̃ ′Tγ(p0, q0)) = T−1U ′TUT + o(1) = O(1) due to the
results of Poskitt and Lütkepohl (1995, Proof of Theorem 3.2) and applying Poskitt (2003,
Proposition 3.1). This completes the proof.
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Figure 1: Estimated Mean Squared Errors for Sample Size T = 50

1 2 3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

Horizon

M
S

E

Impulse Responses

 

 

FMA
PL1
PL2

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Horizon
M

S
E

Forecasts

 

 

FMA
PL1
PL2

(a) DGP 1

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

Horizon

M
S

E

Impulse Responses

 

 

FMA
PL1
PL2

1 2 3 4 5 6 7 8
0

0.002

0.004

0.006

0.008

0.01

0.012

Horizon

M
S

E

Forecasts

 

 

FMA
PL1
PL2

(b) DGP 2

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Horizon

M
S

E

Impulse Responses

 

 

FMA
PL1
PL2

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Horizon

M
S

E

Forecasts

 

 

FMA
PL1
PL2

(c) DGP 3

28



Figure 2: Estimated Mean Squared Errors for Sample Size T = 100
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Figure 3: US treasury bills and bonds yields. See text for definitions.
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Figure 4: Cumulative squared prediction errors of the cointegrated VARMA model identified
via the FMA form and the VECM for different horizons.
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(a) Forecasting horizon: 1 month
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(b) Forecasting horizon: 6 month
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