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ABSTRACT
In this paper, we empirically evaluate competing approaches for combining 
infl ation density forecasts in terms of Kullback–Leibler divergence. In particu-
lar, we apply a similar suite of models to four different datasets and aim at 
identifying combination methods that perform well throughout different series 
and variations of the model suite. We pool individual densities using linear and 
logarithmic combination methods. The suite consists of linear forecasting 
models with moving estimation windows to account for structural change. We 
fi nd that combining densities is a much better strategy than selecting a particu-
lar model ex ante. While combinations do not always perform better than the 
best individual model, combinations always yield accurate forecasts and, as we 
show analytically, provide insurance against selecting inappropriate models. 
Logarithmic combinations can be advantageous, in particular if symmetric 
densities are preferred. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

This paper compares some common approaches for combining density forecasts from a given suite 
of models using the Kullback–Leibler divergence as a measure of accuracy. The aim of the paper 
is to assess the performance of these combination schemes relative to each other and to the perform-
ance of the individual models. In particular, we base our evaluation on the combinations’ perform-
ance throughout different datasets and variations of the model suite.

Nowadays, most central banks want not only to control infl ation but also to smooth output fl uctua-
tions over the business cycle. This strategy is often described as some sort of (fl exible) infl ation 
targeting (e.g., Svensson, 1999; Gali, 2008). Infl ation itself is highly infl uenced by the state of 
the business cycle as prices are raised or lowered depending on the state of capacity utilization. As 
central banks face a trade-off between stabilizing output and infl ation, many researchers such as 
Smets and Wouters (2007) have consequently tried to explain the cyclical comovements between 
the two variables. Good forecasts of future infl ation are needed for the implementation of such a 
policy as the economy typically reacts with a lag to a change in the instruments of the central bank. 
Recognizing the fundamental importance of forecasts, modern central bank strategies have even been 
coined infl ation forecast targeting (Svensson, 1997).
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The value of a point forecast can be increased by supplementing it with some measure of uncer-
tainty. Interval and density forecasts are considered an important part of the communication from 
central banks to the public. For example, the Bank of England as well as the central bank of Norway, 
Norges Bank, publish so-called fan charts for infl ation. However, policy makers usually have a whole 
suite of forecast models at hand. In this situation, some questions arise whether one is just interested 
in point forecasts or whether one is trying to predict densities. First, should one choose a single 
model or combine the individual models to form a consensus forecast? Second, in which way should 
one possibly combine the individual forecasts?

For the combination of point forecasts, the literature has reached a relatively mature state dating 
back to papers such as Bates and Granger (1969). Timmermann (2006) provides an extensive 
summary of the literature and the success of forecast combinations in this fi eld motivates quite natu-
rally the extension to density forecasts. However, the literature on density forecasting and on density 
combinations emerged only recently.

Corradi and Swanson (2006b) provide a survey on the evaluation of individual density and interval 
forecasts. See also Clemen et al. (1995). Clements (2006) and Granger et al. (1989) have considered 
combinations of event and quantile forecasts. While Genest and Zidek (1986) provided a survey on 
density combination in a rather decision-theoretic framework, Wallis (2005) is one of the recent 
papers in economics on density combinations. Mitchell and Hall (2005) and Hall and Mitchell (2007) 
provide some justifi cation for density combination and propose the Kullback–Leibler divergence as 
a unifi ed measure for the evaluation and combination of density forecasts.

Bayesian approaches naturally lend themselves to density combination schemes. For example, 
Min and Zellner (1993) propose simple combinations based on posterior odds ratios. Palm and 
Zellner (1992) propose a combination method that captures the full correlation structure between 
the forecast errors resulting from different models by explicitly modeling their dynamic interaction. 
Following Morris (1977) and Winkler (1981), Hall and Mitchell (2004) consider an approach where 
density forecasts are combined by a ‘decision maker’ who views these forecasts as data that are used 
to update a prior distribution. Bayesian model averaging (BMA) methods have been proposed by 
Leamer (1978), Raftery et al. (1997) and Geweke and Whiteman (2006).

There are very few studies in economics that take a comparative point of view and evaluate alter-
native methods of density forecast combinations. Jore et al. (2008) provide some evidence on the 
performance of the weighting scheme proposed by, for example, Hall and Mitchell (2007) relative 
to equal weights and a pairwise averaging method. However, our knowledge of when and why pre-
dictive density combinations work is still very limited. As Hall and Mitchell (2007) state: ‘It is 
important to try to build up both an increased understanding and an empirical consensus about the 
circumstances in which density forecast combination works.’ Taking infl ation density forecasting as 
a relevant example, we therefore extend the empirical literature in two ways. First, we compare dif-
ferent functional forms of density aggregation. Second, we apply a similar model suite to different 
datasets and focus on the combination methods’ performance throughout these datasets in order to 
obtain results which can be expected to be more robust to variations in the model suite and sample 
period. To the best of our knowledge, these features are not simultaneously shared by any of the 
other empirical studies focusing on the combination of predictive densities.

Specifi cally, we compare combinations of density forecasts for infl ation using a suite of linear 
forecasting models and compare the results over datasets for the USA, the UK, Norway and New 
Zealand. The size of the model suite is relatively modest. All models are estimated using least squares 
or maximum likelihood estimators and a moving window of fi xed size to account for structural 
change. We refer to the aforementioned literature for Bayesian approaches. We investigate two 
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possible ways of aggregation. The fi rst method is the ‘linear opinion pool’ proposed by Stone (1961). 
This method was used almost exclusively in empirical applications on density forecast combination. 
The second method is the ‘logarithmic opinion pool’ (Winkler, 1968). We consider three different 
methods to construct model weights for each of the aggregation methods: equal weights, recursive 
log score weights and (inverse) mean squared error weights. We show that both combination methods 
always provide insurance against selecting the worst models in a suite. Then we study how predic-
tive density combinations perform relative to individual density forecasts and selecting the best-
performing model at the forecasting origin.

Our results show that combining forecasts provide much more accurate forecasts than selecting 
a particular model at the forecast origin in almost all cases. Furthermore, the performance 
obtained by combining is in several cases better than the result for the ex post best individual model. 
We do not fi nd clear support for linear or logarithmic combinations. Equal weights and mean square 
error weights provide more uniform results over the different datasets than recursive log score 
weights.

The rest of the paper is organized as follows. In the next section we discuss the evaluation and 
combination of density forecasts. In the third section we describe the data and the suite of density 
forecast models. The fourth section contains the results of the out-of-sample experiment. The fi fth 
section concludes.

EVALUATING AND COMBINING DENSITY FORECASTS

Since the fi eld of density forecasting is in a relatively infant state in economics, we give a brief 
overview of the areas that are most relevant to this study. One is how to evaluate predictive densities 
and the problem here is that the true density is never observed—not even after the random variable 
is drawn. Another question is how to combine predictive densities, and the main choices to be made 
are the functional form of aggregation and the weighting scheme for the individual models.

Evaluating density forecasts
The question of how to measure the accuracy of density forecasts has recently received a lot of 
attention in the theoretical literature. Corradi and Swanson (2006b) provide an extensive survey. 
This question is decisive because it is central to how we design density combination schemes (Hall 
and Mitchell, 2007). Additional diffi culties arise if one wants to compare multiple models that are 
misspecifi ed and sometimes nested.

One branch of the literature is concerned with testing whether predictive densities are correctly 
specifi ed (Bierens, 1982; Bierens and Ploberger, 1997). These tests require the assumption of correct 
specifi cation of the density forecast under the null hypothesis using all the relevant information (e.g., 
Diebold et al., 1998; Bai, 2003) or conditional on a given information set (Corradi and Swanson, 
2003a). Among these measures, the use of probability integral transforms (PITs) is popular.

Another branch is concerned with the evaluation of multiple, possibly misspecifi ed models. One 
possibility is to evaluate density forecasts in terms of their implied economic value (Granger and 
Pesaran, 2000; Clements, 2004). Alternatively, two statistical approaches have been considered in 
the recent literature. One is based on a distributional analog of the mean squared error norm (Corradi 
and Swanson, 2003b, 2006a); the other is based on the Kullback–Leibler divergence or Kullback–
Leibler information criterion (KLIC) (Kitamura, 2002; Mitchell and Hall, 2005; Amisano and 
Giacomini, 2007).
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The measure of distributional accuracy introduced by Corradi and Swanson (2003b, 2006a) is 
attractive because of its analogy to the usual mean squared error norm in point forecasting. One 
problem is the dependence on a benchmark density which might be diffi cult to justify in our case 
unless one uses a nonparametric estimate, as in Li and Tkacz (2006).

On the other hand, measures based on the well-known KLIC can circumvent this problem. The 
KLIC is a sensible measure of accuracy since it chooses the model which on average gives higher 
probability to events that have actually occurred. As argued by Mitchell and Hall (2005), the KLIC 
provides a unifi ed framework for evaluating, comparing and combining density forecasts. Also, the 
KLIC can be related to other measures which have been used to evaluate density forecasts ex post, 
such as the PITs or Berkowitz’s (2001) likelihood ratio tests. Measures in terms of the KLIC have 
also a Bayesian interpretation as the KLIC-best model is also the model with the highest posterior 
probability (Fernández-Villaverde and Rubio-Ramirez, 2004). For the i.i.d. case, Vuong (1989) sug-
gests a likelihood ratio test for choosing the conditional density model that is closest to the true 
density in terms of the KLIC. The test was extended by Amisano and Giacomini (2007) to cover 
the case of dependent observations. Also Kitamura (2002) employs a KLIC-based approach to select 
between misspecifi ed models.

Specifi cally, suppose f is the density of a real-valued, absolutely continuous random variable Yt 
and we have a set of two densities fi, i = 1, 2, obtained from different models. We will call this set 
a suite, its elements individual densities and the underlying models individual models. The KLIC 
distance between f and fi is defi ned as
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where E denotes the expectation. We assume here and in the following that all densities are strictly 
positive, i.e., f(y) > 0, fi(y) > 0 for all y ∈ �. In order to compare the KLIC of f1, f2 we only need to 
evaluate the last term of the expectation in (1). That is, the expected logarithmic score (ElnS):
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Thus, when ElnS1 > ElnS2 then KLIC1 < KLIC2. Under some regularity conditions, a consistent 
estimate of (2) can be obtained from the average of the sample information, y1,  .  .  .  , yT:

 ln lnSi i t
t

T

T
f y= ( )

=
∑1

1

 (3)

Therefore, we actually do not need to know f to compare f1 and f2 and we choose the model for 
which the expression in (3) is maximal. The last expression will be called (average) logarithmic 
score or simply log score (lnS) in the following.

With respect to density forecasts, we are usually interested in comparing densities conditional on 
different information sets instead of approximating a ‘true’ density. Let ft+h,t,i therefore denote a pre-
diction of the density for Yt+h, h = 1, 2,  .  .  .  , conditional on some information set available at date t. 
Density forecasts are also sometimes called predictive densities. Let yt+h be the realization of Yt+h 
and suppose that h-step-ahead density forecasts have been obtained starting at time T s and given a 
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total number of T observations. A measure of out-of-sample forecasting performance is the 
(out-of-sample) log score given by

 ln ln, , ,Si h S t h t i t h
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T h
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Models or combination schemes that are associated with a high average log score give a higher 
probability to events which have actually occurred (Hall and Mitchell, 2007). Therefore, (4) is our 
preferred measure of forecast accuracy.

Combining density forecasts
There are two elementary choices in combining predictive densities. One is the method of aggrega-
tion or functional form of combining. The other is the construction of the weights attached to the 
individual densities. Possible methods of aggregation are described in an early review of Genest and 
Zidek (1986). We consider two different functional forms: linear combination and logarithmic com-
bination. To the best of our knowledge, these are the only popular approaches in the literature for 
the combination of predictive densities. Some alternative approaches to combination of predictive 
densities are, however, given in Hall and Mitchell (2004).

As before, we consider forecasting a real-valued random variable Yt that has a density. We consider 
N competitive, strictly positive, h-step-ahead density forecasts, {ft+h,t,1,  .  .  .  , ft+h,t,N}, obtained using 
information up to time t. No other assumptions on the individual density forecasts are needed to 
ensure that the following combination methods actually yield densities. In particular, we are not 
restricted to Gaussian forecasts or linear models. The existence of E[lnft+h,t,i(yt)] is, however, assumed 
such that the comparison in terms of log scores is meaningful.

The easiest combination method is linear combination (Stone, 1961):
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where ω t+h,t,i are the corresponding weights. The weights have to be a convex linear combination; 
that is, 0 ≤ ω t+h,t,i ≤ 1 and ΣN

i=1ω t+h,t,i = 1 for all i = 1,  .  .  .  , N, such that the resulting combination is 
indeed a density function.

An alternative way of combining densities is logarithmic combination:
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where the non-negative weights are chosen as before such that the integral in the denominator exists. 
Winkler (1968) points out that the logarithmic opinion pool has a natural-conjugate interpretation. 
For example, consider the combination of normal densities with means and variances μi, σ i, 
i = 1,  .  .  .  , N, respectively. Denote the transformed weights by αi = ω i/σ 2i  accordingly. The logarith-
mic pool is a normal density, N(μc, σ 2c), with mean and variance given by μc = ΣN

i=1αiμi/(ΣN
i=1αi) and 

σ 2c = (ΣN
i=1αi)−1. Thus the logarithmic combination method retains the symmetry of the individual 

forecasts in this case.
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An example in Figure 1 illustrates the main difference between the two aggregation schemes. 
Here, we combine two density functions of two normally distributed random variables with N(−2, 
1) and N(2, 2), respectively. The weight for each individual density is 1/2. From the defi nition, it is 
immediately clear that the linear combination is typically multimodal. Logarithmic combination 

Figure 1. Individual densities and density combinations using (a) linear and (b) logarithmic combination
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yields again a density of a normally distributed random variable with mean −1/2 and variance 4/3, 
N(−1/2, 4/3). Furthermore, the linear combination is generally more dispersed than any of the indi-
vidual densities. The same weighting scheme can therefore yield substantially different densities, 
depending on the functional form of aggregation.

Some reasons to combine density forecasts and to use the above schemes in particular have 
been given by Genest and Zidek (1986) in a decision-theoretic framework. Logarithmic combination 
has been put forward by Winkler (1968). Raftery et al. (1997) and Mitchell and Hall (2005) 
argue for linear combination in a Bayesian framework. However, Mitchell and Hall (2005) point out 
that using only approximative Bayesian weights might lead to worse density forecasts even 
in-sample.

Similar to Hendry and Clements (2004), one can show that the combination of forecasts with 
deterministic weights such as equal weights provides ‘insurance’ against selecting a bad model. This 
means that a combination of density forecasts with equal weights will never be worse than the worst 
individual forecast. Let f1(yt+h), f2(yt+h) be individual density forecasts obtained in some way. A fore-
caster combines both with weights λ, 1 − λ, λ ∈ [0, 1] according to either (5) or (6). Suppose that 
forecast 1 is better than forecast 2 in terms of log score:

 E f y E f yt h t hln ln1 2+ +( )[ ] ≥ ( )[ ]  (7)

For the linear combination, we get for all yt+h ∈ �:
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because λ is deterministic and (7). That is, the linear combination is never worse than the worst 
individual forecast. For the logarithmic combination, we get for all yt+h:
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Thus, combining provides insurance even in this case:
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While equal weights provide insurance in the above sense, other weighting schemes might yield 
even better density combinations. We therefore consider several recent proposals in the emerging 
literature as well as the empirical evidence on the combination of point forecasts.

Equal weights (EW): Equal weights for combining densities have been proposed in the literature 
by Hendry and Clements (2004) and Wallis (2005). Formally, ω t+h,t,i = 1/N for all t, h, i.

Recursive log score weights (RLSW): A weighting scheme based on the out-of-sample perfor-
mance of density forecasts are recursive log score weights as proposed in, for example, Jore et al. 
(2008). The weights for the h-step-ahead density combination take the form:
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where t is the beginning of the evaluation period and is taken as fi xed. The weights can be regarded 
as derived in a Bayesian framework to approximate the models’ posterior probabilities (Mitchell and 
Hall, 2005).

Mean squared error weights (MSEW): In point forecast combination, weights are often derived 
by the models’ relative inverse mean squared prediction error (MSPE) performances computed over 
a window of previous observations. These are not ‘optimal’ weights in a linear framework as MSPE 
weights ignore the correlation structure between forecasts (Granger and Ramanathan, 1984). However, 
these weights tend to outperform more sophisticated weighting schemes as the correlation matrix of 
the forecast errors is quite diffi cult to estimate. The weights for the h-step-ahead density combination 
take the form
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where μτ+h,τ,i denotes the mean (or point) forecast of model i and t is again the beginning of the 
evaluation period.

Selection (SELEC): Selecting the best model is the obvious alternative to combining and therefore 
we also describe how we implement selection in this section. It is natural to assume that a forecaster 
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if he has to select one model chooses the model that performed best in the past. Since we are inter-
ested in predictive densities the relevant criterion is the average log score for a given horizon. We 
apply two selection strategies: the fi rst is based on the evaluation of an expanding window of obser-
vations (SELEC_ew), while the second is based on the evaluation of a moving window of the last 
10 observations (SELEC_mw). It is less interesting to compare the performance of the combination 
methods to the performance of each individual model ex post because this kind of comparison ignores 
the model uncertainty at the time forecasts are made. Note that the way we select models is related 
to the standard AIC criterion based on the predictive likelihood.

DATA AND MODELS

Data
We take infl ation density forecasting as a relevant example to evaluate different ways of combining 
predictive densities. For each country, there is a sample of available observations, x1,  .  .  .  , xT of size 
T and xt is a vector of observations including the price level series pt. We are interested in forecast-
ing quarter-to-quarter infl ation measured by the quarterly log change, π t = Δ1lnpt = lnpt − lnpt−1. We 
consider the Personal Consumption Expenditure (PCE) index for the USA, Consumer Price indices 
(CPI) for the UK and New Zealand and the Norwegian core CPI.1 The set of potential predictors 
contains a quarterly M2 money measure (M1 in the case of New Zealand), Mt, a 3-month quarterly 
interest rate, it, a quarterly output measure, yt, and a quarterly unemployment rate, urt. We use real 
output as a measure of US GDP. Quarterly real GDP series are used for the other three countries. 
We use seasonally unadjusted series apart from the New Zealand production and unemployment 
series. Also, we abstract from the real time aspects and use the latest available vintage for simplicity. 
Data sources can be found in the Appendix.

We start to compute individual forecasts 1 to h steps ahead beginning at time t. At time Ts = t + 
10 we start to compute forecasts also for the combination methods using information on the out-of-
sample performance of the individual models for t + h to T s. The evaluation period for all models 
and combinations is, depending on the horizon, Ts + h to T − 8 + h, since 8 is the maximal forecast-
ing horizon. The following graph illustrates our approach:

The used data spans from 1960Q1 to 2007Q3 for the USA, from 1978Q1 to 2007Q2 for the UK, 
from 1979Q2 to 2007Q3 for Norway and from 1981Q1 to 2008Q1 for New Zealand. Table I provides 
information on the evaluation period.

1 We focus on core CPI for Norway as energy prices have a dominant role in the Norwegian CPI. Norwegian energy prices 
in turn are affected largely by weather conditions.
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Models and forecasting
The model suite is composed of a set of univariate and multivariate specifi cations. The univariate 
models may in part be justifi ed as simple ‘forecasting devices’ as in Clements and Hendry (2006). 
The multivariate models comprise two Philips curve-type models and different vector autoregressive 
(VAR) and vector autoregressive moving-average (VARMA) models that contain variables usually 
considered in the literature on forecasting infl ation. We limit ourselves to linear models even though 
the focus on density forecasts gives scope to nonlinear models. The reason is that the evidence on 
the forecasting performance of nonlinear models is decidedly mixed (see, for example, Marcellino, 
2004, 2008). We therefore leave a comparison of forecasts resulting from linear and nonlinear models 
for future research. UK and Norwegian data display seasonality, while US and New Zealand data 
do not. Therefore we construct two model suites taking this difference into account. The complete 
list of models is given in Table II.

Some comments are in order here. First, we do not claim that the model suites are optimal. We 
do claim, however, that they represent a collection of reasonable models that might be used in a 
real-world application. Second, a glance at Table II reveals that some choices such as the lag lengths 
are quite ad hoc. However, the focus is not on fi nding the best possible specifi cation for each indi-
vidual model. The question we ask is: How do different forms of density combinations perform 
given a set of realistic models? Third, using a similar suite of models for different datasets is disput-
able. On the one hand, it might be more realistic to work out a specifi c model suite for every country. 
On the other hand, this strategy lessens to some extent the dependence of the results on a particular 
model suite and makes the fi ndings more comparable across datasets.

All models are linear and most are estimated by least squares regressions using a moving window 
of the last m observations. Exceptions are the univariate moving-average (MA) and the VARMA 
models. The MA models are estimated using the Time Series 4.0 package in GAUSS and the 
VARMA models using the algorithm of Hannan and Kavalieris (1984). We apply iterative forecast-
ing, and we compute density forecasts using a normal approximation assuming knowledge of coef-
fi cients and the entire history of the time series. Since all models are linear, we can express the 
infl ation series π t as a function of past errors and initial values as

 
π φ ε π ε σt i t i t

i

t

N= + ( )−
=

−

∑ , ,∼ i.i.d. 0 2

0

1

where π  summarizes the initial conditions. Assuming that the past errors and coeffi cients are 
known, the conditional expectation corresponds to the point forecast π t+h,t = Σt−

i=h
1φiεt+h−i + bπ 0, 

and the forecast error is π t+h − π t+h,t = Σh−
i=0

1φiεt+h−i. It follows that the forecast error variance is 
given by σ 2(h) = E[(xt+h − xt+h,t)2] = σ 2Σh−

i=0
1φ2

i. The predictive density given by any of the models 
in the suite is therefore normally distributed with mean given by the usual point forecast and 
variance given by the above expression, N(π t+h,t, σ 2(h)). Even though parameter estimation 
uncertainty is not taken into account when deriving the models’ predictive densities, this appro-
ximation is still useful since our focus is decidedly on the combination of a given set of forecasts. 
Note in particular that the actual forecast errors in the empirical applications will in general not 
be i.i.d. normally distributed errors, in contrast to the assumptions made above. A more 
elaborate approach that also takes parameter estimation uncertainty into account would have to 
resort to simulation techniques as, for example, in Kilian (1998). This topic, however, is left 
for future research.
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(a) (b)

(c) (d)

Figure 2. Cumulative log scores. The graphs show the infl ation series (solid lines) and the cumulative differ-
ence between the log scores of the logarithmic combination with equal weights and selection (dashed lines): 
(a) USA; (b) UK; (c) Norway; (d) New Zealand

RESULTS

The results of the out-of-sample evaluation are summarized in Figures 2 and 3 and in Tables III–VI. 
We focus here on one-, four- and eight-step-ahead density forecasts. Out-of-sample forecasting 
performance is measured both in terms of the average log score, lnS, and root mean square predic-
tion error (RMSPE). We focus mainly on the lnS. Tables III–VI tabulate the out-of-sample forecast-
ing performance of the individual models, the combination schemes and the selection strategy for 
each of the four countries. An explanation of the acronyms for the individual models is given in 
Table II.

We apply the test of equal accuracy of two density forecasts given in Mitchell and Hall (2005). 
Suppose there are two density forecasts, ft+h,t,1(yt+h) and ft+h,t,2(yt+h), and consider the loss differential

d f y f yt h t h t t h t h t t h+ + + + += ( ) − ( )ln ln, , , ,1 2
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The null hypothesis of equal accuracy is H0:E(dt+h) = 0. The sample mean, d̄t+h, has under appro-

priate assumptions the limiting distribution T d d Nt h t h+ +−( ) → ( )0, Ω . We compare the density 
forecasts resulting from different combinations to the one resulting from selection based on a moving 
window of observations. In our application, Tables III–VI show that differences are often statistically 
signifi cant, excluding the UK case.

The results for the individual models show that there is a close relation between a model’s 
average lnS and its RMSPE. Models with the highest lnS often have the lowest or one of the lowest 
RMSPE. The relationship is, however, not one-to-one. For example, for all horizons in the case 
of Norway, there are some models, both univariate and multivariate specifi cations, that provide 
good point forecasts but yield poor density forecasts. As in Stock and Watson (2007), the IMA1D1 
model performs very well in terms of RMSPE and lnS for the US infl ation series. However, the same 
model (in fourth differences) performs poorly for other datasets such as for UK data. Some of the 
multivariate models generate good predictive densities. The VAR2D1_pi is the best model among the 
VARs in the case of the USA, the VAR2D4_pi in the case of Norway and the SVAR4D1_py in 
the case of the UK. In the case of New Zealand, the evidence over horizons is more in favor of 
trivariate VARs.

Selecting the best model at the forecast origin is generally diffi cult and can lead to quite 
inaccurate density forecasts. The moving window approach, SELEC_mw, is more accurate 
for the USA, the UK and New Zealand than SELEC_ew. But only in the cases of the USA 
and the UK, both at forecast horizons h = 4, does SELEC_mw perform better than the best 
individual model. For h = 1 with Norwegian data, SELEC_ew yields forecasts as accurate as 
the best individual model: RWD4. In all the other cases, there are several models and 
combination schemes that perform better. Results are qualitatively similar in terms of point 
forecast accuracy. Therefore our results suggest that it is quite diffi cult to select the best 
individual model at the forecast origin and fi ndings depend on the evaluation window that 
is applied.

Figure 3. USA excluding AR4D1 and IMA1D1. The graph shows the US infl ation series (solid line) and the 
cumulative difference between the log scores of the logarithmic combination with equal weights and selection 
(dashed line) when AR4D1 and IMA1D1 are excluded from the model suite
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The results for the combination schemes are given in the lower part of the tables. Combined 
forecasts dominate the individual models’ forecasts in several, but not all, cases. However, in 11 out 
of 12 cases there are at least two combination methods that provide higher lnSs than the selection 
strategy and only for the USA at forecast horizon h = 4 does selection give the highest average lnS. 
Therefore combining is a ‘safe’ approach to minimize density forecast errors and seems preferable 
to selecting a model. The evidence in favor of combining is weaker when we measure forecast 
accuracy in terms of RMSPE. Combination schemes give the lowest RMSPE only in four cases and 
often only marginally.

Logarithmic combination with equal and MSE weights provides high lnSs. In 11 cases the lnSs 
of these combinations are higher than selection. They are the highest among all the competitors in 
six cases. Differences with linear pooling with the same weights are, however, minor. As in Jore 
et al. (2008), recursive log score weights give marginally more accurate forecasts than other weight-
ing schemes for the USA. For the other countries, RLSW weights yield substantially worse forecasts 
than alternative schemes. While RLSW weights are explicitly based on past density forecast accu-
racy, the estimation of these weights is apparently rather diffi cult in small samples, in particular 
when there is high instability in the relative performance of the individual models, as in the case of 
New Zealand.

The tables give statistics over the full evaluation period but it is also interesting to investigate 
how different methods perform over time. In Figures 2 and 3 we compare the log scores of the 
logarithmic combination method with equal weights and selection. We choose the logarithmic 
combination with equal weights since this combination performs generally very well. As a 
performance measure over time we use cumulative log scores and we focus on h = 1. That is, 
we compute

 
ClnSt s s C s s s S s

s T

t

f y f y
s

= ( ) − ( )+ + + +
=
∑ ln ln, , , ,1 1 1 1

for t = Ts,  .  .  .  , T − 8 + 1, and fs+1,s,C and fs+1,s,S are the density forecasts obtained from logarithmic 
combining and selection, respectively. Thus ClnSt increases when ft+1,t,C turns out to be more accurate 
than ft+1,t,S. Ideally, we would like to see that ClnSt increases steadily over time. This is roughly the 
case for Norway and New Zealand. For the USA and the UK, the pattern is less clear, even though 
combining is still superior on average. This is because IMA1D1 and AR4D1 perform much better 
than all other models in the suite for US data. Selecting the best (or the second best) model is there-
fore easier. When we exclude these two models from the suite, the plot is similar to the other ones 
(Figure 3). A similar result is found for UK data. This explains also why recursive log score weights 
perform so well for the USA. Assigning higher weights to dominant models is simpler in this case 
and improves forecast accuracy.

The presented results might still depend on the predetermined collection of individual forecasting 
models. Therefore we investigate the out-of-sample performance of the combination schemes 
and the selection strategy using different model suites. The models were chosen ex post, based 
on the results in Tables III–VI. We develop four exercises.2 In the fi rst exercise, the model 
suites are limited to the six best-performing models. In the second and third exercises, the model 

2 The results of the robustness exercises are available upon request.
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suites contain two well-performing models for each country. While we choose models which 
are highly correlated in terms of RMSPE in the second exercise, we choose two well-performing 
but lowly correlated models in the third one. Finally, only the best and the worst model of each 
collection are used in the model suite. All these exercises potentially favor a selection strategy. 
Overall, we fi nd that combination methods, even equal-weight schemes, are still performing well 
compared to selection. In sum, the exercises broadly confi rm the results of the main out-of-sample 
evaluation.

CONCLUSION

This paper extends the empirical literature on combining infl ation density forecasts by evaluating 
several aggregation schemes over four different datasets. We consider both different combination 
methods and weighting schemes. Linear and logarithmic combinations with equal weights, recursive 
log score weights and mean squared error weights are used to combine density forecasts from a set 
of univariate and multivariate models for US, UK, Norwegian and New Zealand infl ation. Results 
are mainly evaluated in terms of average log score.

Combinations always provide relatively accurate forecasts and, as we show, provide insurance 
against selecting an inappropriate model. We fi nd that combination schemes do not always beat the 
best individual models but almost always outperform a strategy which selects an individual model 
at the forecast origin based on past performance. We do not fi nd strong evidence in favor of one 
combination method over the other. Equal weights and mean squared error weights were generally 
superior to recursive log score weights. Only in the case in which there were a small number of 
outstanding models in the suite did recursive log score weights yield competitive forecasts. Thus the 
success of this weighting scheme crucially depends on the degree of ‘model uncertainty’ in the 
overall suite of models.

Our study ignores some interesting issues which might be explored in the future. First, all models 
in the suite are linear. As the focus shifts from the usual MSE framework to density forecasts, there 
is a potential for mixtures of linear and nonlinear models. Second, we combine and evaluate density 
forecasts for each horizon separately. A promising line of research might be the joint evaluation of 
sequences of forecasts or ‘forecasting paths’. Last but not least, we only evaluate a limited number 
of functional forms and weighting schemes. The development of other density aggregation schemes 
is another interesting topic for future research.

APPENDIX: DATA AND MODELS

We collect US PCE from the NIPA accounts available from the Bureau of Economic Analysis, 
US GDP, M2 and the unemployment rate from the Federal Reserve Bank of Philadelphia’s 
Real-Time Data Set for Macroeconomists, and US interest rates from the Federal Reserve 
Economic Data (FRED database). UK CPI, interest rates, money and unemployment rate are 
obtained from the OECD database, and UK GDP from EUROSTAT. Norwegian data are collected 
from Norges Bank’s database and New Zealand data from the Reserve Bank of New Zealand 
database.
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Table I. Datasets

Sample Evaluation period

USA 1960 Q1–2007 Q3 (1986 Q1 + h)–(07 Q3–8 + h) (79)
UK 1978 Q1–2007 Q2 (1994 Q1 + h)–(07 Q2–8 + h) (46)
Norway 1979 Q2–2007 Q3 (1995 Q3 + h)–(07 Q3–8 + h) (41)
NZ 1981 Q1–2008 Q1 (1996 Q2 + h)–(08 Q1–8 + h) (37)

Note: The table reports the sample period, the forecasting evaluation period and, 
in parentheses, the number of evaluated forecasts for different countries.

Table II. Defi nitions of forecasting models

Name Defi nition Variables m

USA and New Zealand
RWD1 π t = π t−1 + εt 20
AR1D1 π t = μ + α1π t−1 + εt 20
AR4D1 π t = μ + α1π t−1 +  .  .  .  + α4π t−4 + εt 40
IMA1D1 π t = π t−1 + εt + θεt−1 40
PC-Y π t+h = μ + α(L)π t + β(L)Δ1yt + εt+h 50
PC-U π t+h = μ + α(L)π t + β(L)Δ1urt + εt+h 50

VAR2D1_pm Δ1xt = μ + A1Δ1xt−1 + A2xt−2 + ut xt = (pt, Mt)′ 50
VAR2D1_pi xt = (pt, it)′
VAR2D1_piy xt = (pt, it, yt)′
VAR2D1_pmy xt = (pt, Mt, yt)′
VARMA11D1_pm Δ1xt = μ + A1Δ1xt−1 + ut + M1ut−1 xt = (pt, Mt)′ 50
VARMA11D1_pi xt = (pt, it)′

UK and Norway
RWD4 π at = π at−1 + εt 20
AR1D4 π at = μ + α1π at−1 + εt 20
SAR2D1 π t = μ + s1d1t + s2d2t + s3d3t 40

     +α1π t−1 + α2π t−2 + εt

IMA1D4 π at = π at−1 + εt + θεt−1 40
PC-Y π at+h = μ + α(L)π at + β(L)Δ4yt + εt+h 40
PC-U π at+h = μ + α(L)π at + β(L)urt + εt+h 40

VAR2D4_pm Δ4xt = μ + A1Δ4xt−1 + A2Δ4xt−2 + ut xt = (pt, Mt)′ 50
VAR2D4_pi xt = (pt, it)′
VAR2D4_piy xt = (pt, it, yt)′
VAR2D4_pmy xt = (pt, Mt, yt)′
SVAR4D1_py Δ1xt = μ + s1d1t + s2d2t + s3d3t xt = (pt, yt)′ 50
SVAR4D1_pi      +A1Δ1xt−1 +  .  .  .  + A4xt−4 + ut xt = (pt, it)′

Note: The table shows the defi nitions of the forecasting models used in the suite together with the moving window of 
observations, m, that is used for estimation. In the table, π t and π at  are quarter-to-quarter and year-to-year infl ation, respec-
tively; pt is the price level, it is a short-term interest rate, Mt is a money measure, urt is the unemployment rate and yt is an 
output measure. In the PC models, α(L) = α1 +  .  .  .  + αpL

p−1 and β(L) = β1 +  .  .  .  + βqL
q−1 are lag polynomials. Lag lengths 

are estimated using the BIC in the case of PC models with maximal order equal to four.
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APPENDIX B: RESULTS

Table III. Out-of-sample prediction performance, USA

h = 1 h = 4 h = 8

lnS RMSPE lnS RMSPE lnS RMSPE

RWD1 −0.005 0.231 −0.259 0.222 −0.586 0.278
AR1D1 −0.035 0.216 −0.123 0.239 −0.346 0.265
AR4D1 0.093 0.200 0.008 0.218 −0.336 0.285
IMA1D1 0.167 0.196 0.052 0.210 −0.201 0.265
PC-Y 0.061 0.214 −0.034 0.214 −0.470 0.288
PC-U 0.070 0.207 −0.024 0.210 −0.484 0.284
VAR2D1_pm −0.015 0.223 −0.187 0.241 −0.392 0.281
VAR2D1_pi 0.057 0.212 −0.165 0.238 −0.391 0.278
VAR2D1_piy 0.033 0.217 −0.178 0.249 −0.388 0.283
VAR2D1_pmy −0.051 0.230 −0.218 0.259 −0.409 0.295
VARMA11D1_pm −0.000 0.220 −0.266 0.270 −0.466 0.328
VARMA11D1_pi 0.039 0.209 −0.165 0.244 −0.368 0.293

Selection
SELEC_ew 0.097 0.199 −0.009 0.226 −0.415 0.286
SELEC_mw 0.034 0.216 0.072 0.222 −0.291 0.285

Linear pooling
EW 0.120 0.203 −0.042 0.218 −0.278 0.264
RLSW 0.155** 0.195 0.018 0.222 −0.295 0.280
MSEW 0.127 0.202 −0.020 0.213 −0.246 0.258

Log. pooling
EW 0.117 0.202 −0.014 0.217 −0.250 0.262
RLSW 0.142** 0.195 0.014 0.221 −0.317 0.277
MSEW 0.123 0.201 0.028 0.216 −0.186** 0.259

Note: In the table lnS denotes the average log score, RMSPE denotes the root mean squared prediction error, and * and ** 
indicate signifi cant differences in performance between SELEC_mw and the combination methods at the 90% and 95% 
level, respectively, according to the test of Mitchell and Hall (2005). See Table II for explanation of the model suite.

Table IV. Out-of-sample prediction performance, UK

h = 1 h = 4 h = 8

lnS RMSPE lnS RMSPE lnS RMSPE

Individual models
RWD4 −0.347 0.298 −0.357 0.295 −0.539 0.340
AR1D4 −0.464 0.325 −0.361 0.302 −0.486 0.343
SAR2D1 −0.450 0.391 −0.375 0.351 −0.550 0.454
IMA1D4 −0.468 0.314 −0.409 0.295 −0.694 0.340
PC-Y −0.536 0.316 −0.439 0.361 −0.803 0.606
PC-U −0.477 0.382 −0.399 0.340 −0.700 0.568
VAR2D4_pm −0.542 0.402 −0.487 0.319 −0.764 0.414
VAR2D4_pi −0.459 0.342 −0.483 0.329 −0.778 0.447
VAR2D4_piy −0.457 0.349 −0.476 0.324 −0.779 0.450
VAR2D4_pmy −0.553 0.422 −0.492 0.327 −0.770 0.426
SVAR4D1_py −0.353 0.351 −0.376 0.358 −0.524 0.420
SVAR4D1_pi −0.408 0.383 −0.392 0.399 −0.660 0.528
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Selection
SELEC_ew −0.431 0.390 −0.410 0.339 −0.611 0.412
SELEC_mw −0.405 0.368 −0.348 0.338 −0.587 0.415

Linear pooling
EW −0.391 0.304 −0.374 0.303 −0.608 0.410
RLSW −0.416 0.380 −0.386 0.322 −0.582 0.399
MSEW −0.381 0.309 −0.370 0.299 −0.610 0.394

Log. pooling
EW −0.324 0.303 −0.318 0.303 −0.535 0.425
RLSW −0.408 0.378 −0.380 0.324 −0.544 0.420
MSEW −0.316 0.311 −0.316 0.300 −0.533 0.405

Note: See note to Table III.

Table IV. Continued

h = 1 h = 4 h = 8

lnS RMSPE lnS RMSPE lnS RMSPE

Table V. Out-of-sample prediction performance, Norway

h = 1 h = 4 h = 8

lnS RMSPE lnS RMSPE lnS RMSPE

Individual models
RWD4 −0.165 0.268 −0.163 0.269 −0.347 0.331
AR1D4 −0.464 0.304 −0.472 0.321 −0.720 0.448
SAR2D1 −0.211 0.267 −0.212 0.264 −0.418 0.297
IMA1D4 −0.216 0.263 −0.190 0.269 −0.381 0.331
PC-Y −0.232 0.260 −0.330 0.283 −.060 0.405
PC-U −0.241 0.264 −0.453 0.296 −0.862 0.384
VAR2D4_pm −0.243 0.256 −0.227 0.259 −0.354 0.301
VAR2D4_pi −0.189 0.250 −0.193 0.251 −0.361 0.303
VAR2D4_piy −0.241 0.267 −0.200 0.248 −0.370 0.301
VAR2D4_pmy −0.357 0.275 −0.222 0.256 −0.369 0.299
SVAR4D1_py −0.242 0.248 −0.301 0.246 −0.509 0.300
SVAR4D1_pi −0.213 0.248 −0.282 0.251 −0.488 0.305

Selection
SELEC_ew −0.165 0.268 −0.283 0.278 −0.528 0.332
SELEC_mw −0.305 0.259 −0.419 0.280 −0.569 0.315

Linear pooling
EW −0.039 0.236 −0.121* 0.252 −0.325 0.299
RLSW −0.175 0.264 −0.194 0.269 −0.376 0.311
MSEW −0.050 0.241 −0.114* 0.251 −0.316* 0.298

Log. pooling
EW −0.046** 0.235 −0.131* 0.258 −0.299** 0.309
RLSW −0.191 0.261 −0.223 0.269 −0.431 0.305
MSEW −0.070** 0.240 −0.119** 0.255 −0.289** 0.304

Note: See note to Table III.
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